VILLAGE OF DOWNERS GROVE Report for the Village 2/13/2018

SUBJECT:	SUBMITTED BY:			
2410 Ogden Avenue - Special Use	Stan Popovich, AICP Director of Community Development			

Synopsis

The petitioner is requesting Special Use approval to operate an automobile dealership at 2410 Ogden Avenue.

STRATEGIC PLAN ALIGNMENT

The goals for 2017-2019 include Strong and Diverse Local Economy.

FISCAL IMPACT

n/a

UPDATE & RECOMMENDATION

This item was discussed at the February 6, 2018 Village Council meeting. Staff recommends approval on the February 13, 2018 active agenda.

BACKGROUND

Property Information & Zoning Request

The petitioner is proposing to redevelop the site of an existing one-story vacant building (formerly a restaurant) with a new two-story, 8,500 square-foot automobile dealership. The proposed building will be near the center of the lot and parking will wrap around the building on all sides with automobile display concentrated in the rear. The eastern curb cut onto Ogden Avenue will be removed, while the western curb cut will be improved.

The new building's modern design will consist primarily of steel, masonry and concrete. The street facing elevation includes tinted window panes, framing, metal clad panels and upwards slanted eaves. The southern half of the side elevations maintain the window panes, and the north half incorporates two different variations of metal clad panels. The rear elevation is mostly brown colored metal clad paneling with horizontal lines and glazed overhead doors leading to the service area.

The interior will consist of a front sales area, interior vehicle display, service bays, customer waiting area, and reception. The smaller second floor will also have offices and a common area. The rear service area has five vehicle bays for maintenance, washing/detailing, and a photographic marketing area.

Compliance with the Comprehensive Plan

The Comprehensive Plan's Future Land Use Map designates this property as Corridor Commercial. The plan calls for the concentration of auto dealerships within this western section of the corridor and to promote uses that have a regional draw. The proposal also achieves the Comprehensive Plan's aesthetic, site and screening improvement goals. The proposed use at this property is consistent with the Comprehensive Plan.

Compliance with the Zoning Ordinance

The property is zoned B-3, General Services and Highway Business. An automobile dealership use is an allowable Special Use in the B-3 zoning district. The new building and redeveloped site will be compliant with the required B-3 bulk standards. The trash enclosure will be screened, and the photometric plan demonstrates that the light trespass will not exceed code requirements. The proposed use and site is consistent with the Zoning Ordinance.

Engineering\Public Improvements

Post Construction Best Management Practices (PCBMPs) are not required since the proposal results in a decrease in impervious area. The existing detention area and utility connections will remain the same. The traffic study concluded that the single full movement access drive will be adequate in accommodating the projected traffic and onsite vehicle deliveries. The impact on the existing road network will be minimal. The owner will dedicate land to be incorporated into the Ogden Avenue right-of-way. A public sidewalk and an internal pedestrian connection is proposed.

Public Comment

No member of the public spoke at the public hearing. After the Plan Commission meeting, two members of the public contacted staff and expressed concerns regarding traffic, light glare, and the general number of automobile dealerships in the Village. Staff explained and reviewed the proposal including the site plan, traffic study, landscaping/screening and photometric plans with the residents.

ATTACHMENTS

Ordinance Aerial Map Staff Report with attachments dated January 8, 2018 Draft Minutes of the Plan Commission Hearing dated January 8, 2018

VILLAGE OF DOWNERS GROVE

COUNCIL ACTION SUMMARY

INITI	АТЕD:	Applicant		DATE:	February	13, 2018	
		(Name)					
RECO	OMMENDATIC	N FROM:			_ FILE REF:	17-PLC-0039	
		(Bo	oard or De	epartment)			
NATU	JRE OF ACTIO	N:	STEPS	S NEEDED	TO IMPLEME	ENT ACTION:	
<u>X</u>	Ordinance		Motior	n to Adopt "A	AN ORDINANO	CE	
<u> </u>	Resolution		AUTH OGDE	ORIZING A N AVENUE MORU E DI	SPECIAL USE TO PERMIT A	FOR 2410	
<u> </u>	Motion		AUIO		EALERSHIF, a	is presented.	
<u></u>	Other			U	^v V		

SUMMARY OF ITEM:

Adoption of the attached ordinance will authorize a special use for 2410 Ogden Avenue to permit an automobile dealership.

RECORD OF ACTION TAKEN:

l\wp\cas.18\SU-2410-Ogden-17-PLC-0039

ORDINANCE NO.

AN ORDINANCE AUTHORIZING A SPECIAL USE FOR 2410 OGDEN AVENUE TO PERMIT AN AUTOMOBILE DEALERSHIP

WHEREAS, the following described property, to wit:

LOTS 18, 19, 20, 21 AND 22 IN BLOCK 1 IN ARTHUR T. MCINTOSH AND CO'S FOURTH OGDEN AVENUE SUBDIVISION, BEING A SUBDIVISION IN THE SOUTH HALF OF SECTION 1, TOWNSHIP 38 NORTH, RANGE 10, EAST OF THE THIRD PRINCIPAL MERIDIAN, ACCORDING TO THE PLAT THEREOF RECORDED APRIL 9, 1925 AS DOCUMENT 190962, IN DUPAGE COUNTY, ILLINOIS.

Commonly known as: 2410 Ogden Avenue, Downers Grove, IL 60515 PINs: 08-01-303-014; -015; -016; -017

(hereinafter referred to as the "Property") is presently zoned in the "B-3, General Services and Highway Business District" under the Comprehensive Zoning Ordinance of the Village of Downers Grove; and

WHEREAS, such petition was referred to the Plan Commission of the Village of Downers Grove, and said Plan Commission has given the required public notice, has conducted a public hearing for the petition on January 8, 2018 and has made its findings and recommendations, all in accordance with the statutes of the State of Illinois and the ordinances of the Village of Downers Grove; and,

WHEREAS, the Plan Commission has recommended approval of the Special Use, subject to certain conditions; and,

WHEREAS, the Village Council finds that the evidence presented in support of said petition, as stated in the aforesaid findings and recommendations of the Plan Commission, is such as to establish the following:

1. That the proposed use is expressly authorized as a Special Use in the district in which it is to be located;

- 2. That the proposed use at the proposed location is necessary or desirable to provide a service or a facility that is in the interest of public convenience and will contribute to the general welfare of the neighborhood or community.
- 3. That the proposed use will not, in the particular case, be detrimental to the health, safety or general welfare of persons residing or working in the vicinity or be injurious to property values or improvements in the vicinity.

NOW, THEREFORE, BE IT ORDAINED by the Council of the Village of Downers Grove, in DuPage County, Illinois, as follows:

<u>SECTION 1</u>. That Special Use of the Property is hereby granted to allow construction of an automobile dealership.

SECTION 2. This approval is subject to the following conditions:

- 1. The Special Use shall substantially conform to the staff report dated January 8, 2018; engineering drawings prepared by Damas Consulting Group dated December 1, 2017 and last revised on December 20, 2017 and architectural drawings prepared by Phorma Designs, Inc. dated December 1, 2017 and last revised December 14, 2017, except as such plans may be modified to conform to the Village codes and ordinances.
- 2. All test drives are limited to arterial streets as defined in the Comprehensive Plan.
- 3. All vehicle deliveries must be completed on private property. Vehicles may not be dropped off or picked up on Ogden Avenue.
- 4. A pedestrian connection must be provided from the public right-of-way to the main building entrance in conformance with the Zoning Ordinance.
- 5. The building shall be equipped with an automatic fire suppression system and an automatic and manual fire alarm system.
- 6. Prior to the issuance of a building permit, an administrative lot consolidation shall be completed that dedicates additional IDOT right-of-way.
- 7. A sidewalk easement shall be granted to the Village.

SECTION 3. The above conditions are hereby made part of the terms under which the Special Use is granted. Violation of any or all of such conditions shall be deemed a violation of the Village of Downers Grove Zoning Ordinance, the penalty for which may include, but is not limited to, a fine and/or revocation of the Special Use granted herein.

<u>SECTION 4</u>. It is the Petitioner's obligation to maintain compliance with all applicable Federal, State, County and Village laws, ordinances, regulations, and policies.

<u>SECTION 5</u>. That all ordinances or parts of ordinances in conflict with the provisions of this ordinance are hereby repealed.

Mayor

Passed: Published: Attest:

Village Clerk

1\mw\ord.18\SU-2410-Ogden-17-PLC-0039

0 30 60

2410 Ogden Avenue-Location Map

VILLAGE OF DOWNERS GROVE REPORT FOR THE PLAN COMMISSION JANUARY 8, 2018 AGENDA

SUBJECT:	Түре:	SUBMITTED BY:
17-PLC-0039		Scott Williams, AICP
2410 Ogden Avenue	Special Use	Planner

REQUEST

The petitioner is requesting approval of a Special Use to construct a personal vehicle sales business at 2410 Ogden Avenue.

NOTICE

The application has been filed in conformance with applicable procedural and public notice requirements.

GENERAL INFORMATION

OWNER:	Agri-Pes, LLC 857 Willow Lane Willowbrook, IL 60527
APPLICANT:	Agent: Anas Alkhatib Agri-Pes, LLC 857 Willow Lane Willowbrook, IL 60527

PROPERTY INFORMATION

EXISTING ZONING:	B-3, General Services and Highway Business
EXISTING LAND USE:	Vacant Restaurant
PROPERTY SIZE:	65,030 sq. ft. (1.5 acres)
PINS:	08-01-303-014, -015, -016, -017

SURROUNDING ZONING AND LAND USES

	ZONING	FUTURE LAND USE
NORTH:	B-3, General Services and Highway Business	Corridor Commercial
	M-1, Light Manufacturing	Corridor Commercial
SOUTH:	B-3, General Services and Highway Business	Corridor Commercial
WEST:	B-3, General Services and Highway Business	Corridor Commercial
EAST:	B-3, General Services and Highway Business	Corridor Commercial

ANALYSIS

SUBMITTALS

This report is based on the following documents, which are on file with the Department of Community Development:

17-PLC-0039; 2410 Ogden Avenue January 8, 2018

Page 2

- 1. Project Narrative
- 2. Plat of Survey
- 3. Plat of Consolidation
- 4. Engineering Plans
- 5. Architectural Plans
- 6. Landscape Plan
- 7. Photometric Plan
- 8. Traffic Study

PROJECT DESCRIPTION

The owner of the property is proposing to construct a personal vehicle sales business at the property located on the north side of Ogden Avenue, approximately 385 feet east of Cross Street, commonly known as 2410 Ogden Avenue. The property is zoned B-3, General Services and Highway Business. Personal vehicle sales business is an allowable Special Use in the B-3 zoning district.

Currently, the subject property is improved with a one-story vacant building (formerly a restaurant) and a surface parking lot. The property consists of five lots of record. The site is accessed currently by two existing Ogden Avenue curb-cuts.

Proposed Development

Site Design: The petitioner is proposing to construct a two-story, 8,500 square foot building. The proposed building will be sited in the center of the lot, and the parking will wrap around the building on all sides. Multiple rows of parking are shown in the rear yard. A trash enclosure is located to the side of the primary structure at the northeast corner.

The existing eastern Ogden Avenue curb-cut has been eliminated. Turning exhibits demonstrate that the curb-cut and drive aisle widths are sufficient for onsite vehicle unloading/loading. An internal pedestrian connection leads from the main entrance to the proposed public sidewalk.

Parking: The parking area will consist of 92 parking spaces including display vehicles, employee parking, service parking and customer parking. The outdoor automobile display and service parking is shown in the rear and western side yards. Employee parking is concentrated in the eastern side yard. Guest or customer parking is located in the street yard.

Elevations: The new building's modern design will consist primarily of steel, masonry and concrete. The south elevation includes tinted window panes, framing, metal clad panels and upwards slanted eaves. The southern half of the side elevations maintain the window panes, and the north half incorporates two different variations of metal clad panels. The rear elevation is mostly a brown colored metal clad paneling with vertical lines and glazed overhead doors leading to the service area. Parapet walls fully screen the rooftop mechanical units.

Floor Plans: The interior will consist of a front sales area, interior vehicle display, service bays, customer waiting area, and reception. The smaller second floor will also have offices and a common area. The rear service area has five vehicle bays for maintenance, washing/detailing, and a photographic marketing area.

Landscaping/Screening: The petitioner is proposing landscaping around the perimeter of the property and interior islands, in conformance with the Village requirements. The new trash area will be screened with a metal clad panel gate and walls over concrete masonry unit (CMU) block walls. Additional landscaping will be planted between the enclosure and Ogden Avenue. The submitted photometric plan indicates that the new light fixtures will not adversely spill over on the adjacent properties.

The Comprehensive Plan's Future Land Use Map designates this property as Corridor Commercial. The plan calls for the concentration of auto dealerships within this western section of the corridor and to promote uses that have a regional draw. The petitioner's redesigned site plan reduces the number of curb cuts, includes a dumpster enclosure, new parking lot landscape islands and the beautification of Ogden Avenue with dense landscaping, all of which are Comprehensive Plan goals.

The proposed personal vehicle sales business at this property is consistent with the Comprehensive Plan.

COMPLIANCE WITH ZONING ORDINANCE

COMPLIANCE WITH THE COMPREHENSIVE PLAN

The property is zoned B-3, General Services and Highway Business. The proposed personal vehicle sales business is an allowable Special Use in the B-3 District per Section 5.010 of the Zoning Ordinance. The new building and redeveloped site will be compliant with the required B-3 bulk standards. The table below identifies the required regulations and what is proposed:

2410 Ogden Avenue	Required	Proposed
South Setback (Street Yard –		
Ogden Avenue) - Building	75 ft.	99 ft.
East Setback (Side Yard) -		
Building	0 ft.	75 ft.
West Setback (Side Yard) -		
Building	30 ft.	63 ft.
North Setback (Rear Yard) -		
Building	0 ft.	92 ft.
South Setback (Street Yard		
Ogden Avenue) - Parking	50 ft.	50.5 ft.
Landscaped Open Space	6,503 sf. (10%)	12,648 sf. (20%)
Street yard landscaped open space	3,251 sf	6,261 sf
Floor Area Ratio	0.75 (max)	0.13
Building Height	60 ft. (max)	27.75 ft.
Parking Spaces	21	92

The proposed use and site is consistent with the Zoning Ordinance.

ENGINEERING/PUBLIC IMPROVEMENTS

Post Construction Best Management Practices (PCBMPs) are not required since the proposal results in a decrease in impervious area. There is no existing floodplain or wetlands on the property. The existing detention in the southwest corner of the site is to be maintained. Storm sewers will connect to the existing detention area and outlet to an existing storm sewer along Ogden Avenue.

The existing water service and sanitary services will be replaced. The Sanitary District provided conceptual approval for the proposed redevelopment.

Vehicle deliveries will be made on site by vehicle carriers. No vehicle deliveries or other business activities will be permitted to take place on Ogden Avenue. The traffic study concluded that the single full movement access drive will be adequate in accommodating the traffic projected to be generated by the proposed development. The study also stated there will be a low volume of traffic generated during

peak travel hours, and the impact on adjacent levels of service will be minimal. Staff concurs with the findings of the traffic study. The proposed personal vehicle sales business and site plan has received conceptual approval from IDOT.

The petitioner is proposing a sidewalk along Ogden Avenue. Because it would be constructed on private property, enacting a sidewalk easement is a condition of approval. This easement will be conveyed through the required plat of consolidation.

PUBLIC SAFETY REQUIREMENTS

The Fire Prevention Division has reviewed the proposed plans and will require the building include a fire alarm and sprinkler system that meet the Village's code requirements. The proper fire department connection and hydrant are shown on the plans.

The proposed development provides sufficient access for emergency vehicles. The site layout permits Fire Department apparatus the opportunity to enter and exit the site from the Ogden Avenue curb cut. The loop around the building provides good access around the building and property as needed.

NEIGHBORHOOD COMMENT

Notice was provided to all property owners 250 feet or less from the property in addition to posting public hearing notice signs and publishing the legal notice in the *Downers Grove Suburban Life*. Staff has received one informational inquiry.

FINDINGS OF FACT

The petitioner is requesting a Special Use to construct a personal vehicle sales business at 2410 Ogden Avenue. Staff finds that the proposal meets the standards for granting a Special Use as outlined below:

Section 28.12.050.H Approval Criteria

No special use may be recommended for approval or approved unless the respective review or decisionmaking body determines that the proposed special use is constituent with and in substantial compliance with all Village Council policies and plans and that the applicant has presented evidence to support each of the following conclusions:

1. That the proposed use is expressly authorized as a Special Use in the district in which it is to be located;

The property is located in the B-3, General Service and Highway Business zoning district. Under Section 5.010 of the Zoning Ordinance, personal vehicle sales business is listed as an allowable Special Use in the B-3 zoning district. This standard has been met.

2. That the proposed use at the proposed location is necessary or desirable to provide a service or a facility that is in the interest of public convenience and will contribute to the general welfare of the neighborhood or community.

The proposed plan will allow the petitioner to redevelop a vacant site which in turn will enhance the Ogden Avenue corridor and provide vehicle sales and services to the local residents, businesses and the larger region. The proposed use is in the interest of the public convenience and will contribute to the general welfare of the area by providing growth and employment opportunities. The petitioner's proposed use will meet various Comprehensive Plan goals. This standard has been met.

3. That the proposed use will not, in the particular case, be detrimental to the health, safety or general welfare of persons residing or working in the vicinity or be injurious to property values or improvements in the vicinity.

17-PLC-0039; 2410 Ogden Avenue January 8, 2018

The proposed use will not be detrimental to the health, safety or general welfare of persons residing in or working in the vicinity and will not be injurious to property values or improvements in the vicinity. The petitioner will be redeveloping a vacant property. The proposed development will meet all applicable Village regulations including the Stormwater Ordinance. Additionally, specific conditions will be placed on the subject property to ensure that there will be no or minimal secondary impacts to the surrounding properties, including loading/unloading and test driving restrictions. This standard has been met.

RECOMMENDATIONS

The proposed Special Use for personal vehicle sales business at 2410 Ogden Avenue is consistent with the Comprehensive Plan, the Zoning Ordinance and surrounding zoning and land use classifications. Based on the findings listed above, staff recommends the Plan Commission recommend the Village Council **approve** the Special Use as requested in case 17-PLC-0039 subject to the following conditions:

- 1. The Special Use shall substantially conform to the staff report; engineering drawings prepared by Damas Consulting Group dated December 1, 2017 and last revised on December 20, 2017 and architectural drawings prepared by Phorma Designs, Inc. dated December 1, 2017 and last revised December 14, 2017, except as such plans may be modified to conform to the Village codes and ordinances.
- 2. All test drives are limited to arterial streets as defined in the Comprehensive Plan.
- 3. All vehicle deliveries must be completed on private property. Vehicles may not be dropped off or picked up in Ogden Avenue.
- 4. A pedestrian connection must be provided from the public right-of-way to the main building entrance in conformance with the Zoning Ordinance.
- 5. The building shall be equipped with an automatic suppression system and an automatic and manual fire alarm system.
- 6. An administrative lot consolidation shall be completed prior to the issuance of a building permit.
- 7. A sidewalk easement shall be granted to the Village.

Staff Report Approved By:

Aulie

Stanley J. Popovich, AICP Director of Community Development

SP; sw -att

0 30 60

2410 Ogden Avenue-Location Map

<u>Phorma Designs, Inc.</u>

2092 Gardner Circle E. Suite 1 Aurora, IL. 60503

Architectural & Planning

Tel: (630)229-6498 Fax: (630)982-3795

BRIEF PROJECT DESCRIPTION

The proposed building project located at 2410 Ogden Ave. in Downers Grove, IL property is designated to be a new Auto Dealership in the business of selling and buying vehicles along with minor maintenance towards vehicles. The said property is currently zoned as a B3 business district with the applicant applying for special use of the property. The site of approximately 46,000 square feet shall be remodeled with new curb and parking pavement appeal with additional required new landscaping and parking lot lighting.

The proposed Auto Dealership gross building of approximately 8,500 square feet shall be constructed of but not limited to concrete, masonry, steel, metal clad panels and drywall materials. All finishes shall consist of commercial grade designation. The structure shall be of steel, concrete and masonry construction along with new mechanical HVAC systems of RTU's placed on roof and interior space heaters hung from roof joists in auto bay area. New plumbing domestic water and separate fire suppression water lines shall be put in place for the new building along with new electrical panels and transformer feed if required.

The proposed Auto Dealership shall consist of a sales area, interior vehicle display, customer waiting area, reception and conference/office areas along with employee break room space. The other portion of the proposed building shall consist of a 5 vehicle bays for maintenance, washing/detailing and photo marketing area.

The dealership will operate from 10 AM to 8 AM (Monday through Friday) and 11 AM to 6 PM (Saturday and Sunday).

The building will include 5 employees in sales and management and 2 in the service area. The delivery of vehicles will be scheduled on a weekly bases and all loading and unloading of the inventory shall take place within the dealership lot.

All employees are to park east of the building only. And the day to day operations shall include an Auto retail (selling and buying) and some minor service to the dealership own inventory (no Auto service will be open for the public). Detailing of cars and photographing of new Auto to be conducted on the site.

Listed below is additional site and building information as follows -

Project Description

This project consists of 1.50-acres. This site is located in Dupage County North Along Ogden Ave . The address of the property is 2400 Ogden Ave Downers Grove, IL. The proposed development will be a new Auto Dealership with parking lot.

PHORMA DESIGNS, Inc. • 2092 Gardner Cir. E. Suite 1• Aurora, IL. • 60504 • (630)229-6498 • (630)982-3795 • www.phormadesigns.com • pchabez@phormadesigns.com

Phorma Designs, Inc.

2092 Gardner Circle E. Suite 1 Aurora, IL. 60503

Architectural & Planning

Tel: (630)229-6498 Fax: (630)982-3795

Existing Conditions

The subject property existing lot is used for the exiting restaurant building and parking lot, The existing building and parking lot to be removed There is mo existing flood plain or wetland on the lot.

Proposed Development

The proposed development is to include new building with foot print of 7000 SF and proposed parking lot with total of 101 parking spaces. The development is not going to have any negative impact to the existing storm water runoff.

<u>Floodplains and Wetlands</u> There is no jurisdictional wetland or floodplain on the lot. There is not LPDA on the site.

Storm Water Management SITE AREA = 1.50 ACRE The Existing Site Condition Impervious area= 54,628 SF Building=3737 SF Concrete Sidewalk/Concrete patio=1583 SF Asphalt Parking lot=49,308 SF Green area=10,760 SF

-Proposed site condition decreases impervious area from the existing condition, PCBMP is not required for this site

Proposed Site condition:

Total Site Area = 1,5 ACRE

Area breakdown :

Building = 7000 SF Concrete Sidewalk/Concrete pad = 870 SF Asphalt Parking lot = 42,710 SF Green area = 14,808 SF

Total Impervious area = 50,580 SF

The site out flow to the culvert located at the southeast corner of the lot. The existing detention area southwest of the site to be maintained (no change) the site out flow will be connected to the existing storm manhole.

PHORMA DESIGNS, Inc. • 2092 Gardner Cir. E. Suite 1• Aurora, IL. • 60504 • (630)229-6498 • (630)982-3795 • www.phormadesigns.com • pchabez@phormadesigns.com

Narrative

Storm Management Submittal

Project Description

This project consists of 1.50-acres. This site is located in Dupage County North Along Ogden Ave . The address of the property is 2400 Ogden Ave Downers Grove, IL. The proposed development will be a new Auto Dealership with parking lot.

Existing Conditions

The subject property existing lot is used for the exiting restaurant building and parking lot, The existing building and parking lot to be removed There is mo existing flood plain or wetland on the lot.

Proposed Development

The proposed development is to include new building with foot print of 7000 SF and proposed parking lot with total of 101 parking spaces. the development is not going to have any negative impact to the existing storm water runoff.

<u>Floodplains and Wetlands</u> There is no jurisdictional wetland or floodplain on the lot. There is not LPDA on the site.

Storm Water Management

SITE AREA = 1.50 ACRE The Existing Site Condition Impervious area= 54,628 SF Building=3737 SF Concrete Sidewalk/Concrete patio=1583 SF Asphalt Parking lot=49,308 SF Green area=10,760 SF

-Proposed site condition decreases impervious area from the existing condition, PCBMP is not required for this site

Proposed Site condition:

Total Site Area = 1,5 ACRE

Area breakdown : Building=7000 SF Concrete Sidewalk/Concrete pad=870 SF Asphalt Parking lot=42,710 SF Green area=14,808 SF

Total Impervious area=50,580 SF The site out flow to the culvert located at the southeast corner of the lot. The existing detention area southwest of the site to be maintained (no change) the site out flow will be connected to the existing storm manhole

Area of property is approximately 65,360 square feet

"X" in box indicates that hereon drawn plat was ordered as a non-monumented survey

Please check Legal Description with Deed and report any discrepancy immediately.

Surveyed April 24 ____, 20 _____ Building Located _____April 24 _____, 20___17

Scale: 1 inch =	30 ft.
Order No	170405
Ordered By:	Wade Joyner, Attorney at Law

Chicago Title Insurance Company Order No. 17SA3716035AU Effective Date: February 16, 2017 Proposed Insured: AGRI-PES, LLC

This professional service conforms to the current Illinois minimum standards for an ALTA/NSPS survey

STATE OF ILLINOIS STATE OF ILLINOIS

I, STEPHEN J. BALEK, an Illinois Professional Land Surveyor, hereby certify that I have surveyed the property described above and the plat hereon drawn is a correct representation of said survey.

Dimensions are in feet and decimal parts thereof and are corrected to a temperature of 62 degrees Fahrenheit.

ORIGINAL SEAL IN RED

Illinois Professional Land Surveyor No. 035-001712 My license expires on November 30, 2018

CITY ENGINEER'S CERTIFICATE		MAIL TO:
STATE OF ILLINOIS)		
) SS COUNTY OF DUPAGE)		
I, THE CITY OF DOWNERS GROVE, ILLINOIS LAND IMPROVEMENTS DESCRIBED IN THE SPECIFICATION THEREFORE, MEET THE M SAID CITY AND HAVE BEEN APPROVED & HAVING JURISDICTION THEREOF.	, CITY 5, HEREBY CE E PLAT, AND IINIMUM REQU BY ALL PUBLI	ENGINEER FOR RTIFY THAT THE THE PLANS AND JIREMENTS OF C AUTHORITIES
DATED AT DOWNERS GROVE, DUPAGE CO	DUNTY, ILLINC _, A.D., 20	IIS. _·
CITY ENGINEER		
DUPAGE COUNTY RECORDER'S CERTIFICA	TE	
STATE OF ILLINOIS)) SS		
COUNTY OF DUPAGE)		
THIS INSTRUMENT RECORD IN THE RECORDER'S OFFICE OF	DU PAGE C	, WAS FILED FOR OUNTY, ILLINOIS.
ON THE	DAY OF	, A.D., 20
AT O'CLOCK M. AM	ND WAS RECO	IRDED IN
BOOK OF PLATS ON	I PAGE	
RECORDER OF DEEDS		
COUNTY CLERK'S CERTIFICATE		
STATE OF ILLINOIS)		
COUNTY OF DUPAGE)		
I, COUNTY, ILLINOIS. DO HEREBY, THAT I I NO UNPAID CURRENT GENERAL TAXES, I DELINQUENT OR UNPAID SPECIAL ASSES AGAINST ANY OF LAND SHOWN ON THIS	FIND NO DELI NO UNPAID F SMENTS, NO PLAT.	NTY CLERK OF DUPAGE NQUENT GENERAL TAXES, ORFEITED TAXES, NO REDEEMABLE TAX SALES
GIVEN UNDER MY HAND AND SEAL AT DILLINOIS.	DOWNERS GRO	IVE, DUPAGE COUNTY,
THIS UA	(Y OF	, A.D., 20
COUNTY CLERK, DUPAGE COUNTY, ILLING	DIS.	
STATE OF ILLINOIS)		
) SS COUNTY OF DUPAGE)		
I, ROGER P. JACOB, ILLINOIS PROFESSIO DO HEREBY CERTIFY THAT AT THE REQU AND CONSOLIDATED THE FOLLOWING DES	DNAL LAND S JEST OF THE SCRIBED PRO	JRVEYOR, NO. 3384, OWER, THEREOF, I HAVE SURVEYED PERTY:
LOTS 18,19,20,21 AND 22 IN BLOCK 1 FOURTH OCDEN AVENUE SUBDIVISION, B SECTION 1, TOWNSHIP 38 NORTH, RANG ACCORDING TO THE PLAT THEREOF REC 190962, IN DUPAGE COUNTY, ILLINOIS.	IN ARTHUR EING A SUBD E 10, EAST ORDED APRIL	T. MCINTOSH AND COMPANY'S IVISION IN THE SOUTH 1/2 OF OF THE THIRD PRINCIPAL MERIDIAN, 9, 1925 AS DOCUMENT NUMBER
CONTAINING 65,621.3 SQUARE FEET OR	1.5065 ACR	ES MORE OR LESS.
I FURTHER CERTIFY THAT THE PLAT HEF SAID SURVEY AND SUBDIVISION WHICH V OF THE STATE OF ILLINOIS.	REON DRAWN WAS PREPARE	IS A CORRECT REPRESENTATION OF D IN COMPLIANCE WHIT THE LAWS
I FURTHER CERTIFY THAT THE PROPERT DRAWN IS WITHIN ON CORPORATE LIMITS WHICH HAS ADOPTEDAN OFFICIAL COMPF POWERS AUTHORIZED BY THE STATE OF HERETOFORE AND HEREAFTER AWENDED	Y DESCRIBED S OF THE CIT REHENSIVE PL ILLINOIS ACC	AND SHOWN ON THE PLAT HEREON Y OF DOWNERS GROVE, ILLINOIS AN AND IS EXERCISING THE SPECIAL CORDING TO 65 ILCS 5/11-12-6 AS
I FURTHER CERTIFY THAT ACCORDING TO PANEL NUMBER 17043 C 0803 H, WHI THIS SITE APPEARS TO BE LOCATED IN THE 0.2% ANNUAL CHANCE FLOODPLAI) THE FLOOD AN EFFECTI ZONE "X" (A N) TO THE B	INSURANCE RATE MAPS, COMMUNITY VE DATE OF DECEMBER 16, 2004, REA DETERMINED TO BE OUTSIDE EST OF MY KNOWLEDGE AND BELIEF.
GIVEN UNDER MY HAND AND SEAL THIS	D/	AY OF, IN THE YEAR 20
ROGER P. JACOB IILLINOIS PROFESSIONAL LAND SURVEYOR	NO. 3384	
	STATE OF ILLINOIS COUNTY OF COOK	} s.s.
	THIS IS TO CERTIF WERE MADE BY M CONTROL. THIS PR MINIMUM STANDARI DATED THIS	Y THAT THIS PLAT AND THE SURVEY ON WHICH IT IS BAS E, OR BY PERSONS UNDER MY DIRECT SUPERVISION AND OFESSIONAL SERVICE CONFORMS TO THE CURRENT ILLINO IS FOR A BOUNDARY SURVEY. 27 TH. DAY OF 201
	R	m P. Jacob
11/30/2018		NOIS PROFESSIONAL LAND SURVEYOR NO. 3384

UTILITY NOTE

- 1. THE EXISTENCE AND LOCATION OF U INVESTIGATED AND VERIFIED IN THE AREA. EXCAVATION IN THE VICINITY SHALL BE HELD RESPONSIBLE FOR OF EXISTING UTILITIES AND STRUCT
- 2. THE CONTRACTOR IS TO UNCOVER A 3. CALL JULIE (800)892-0123 PRIOR TO D
- 4. ALL DISTURBED AREAS SHALL BE RE
- 5. THE CONTRACTOR MUST COMPLY W
- 6. THE CONTRACTOR SHALL OBTAIN AL PRIOR TO COMMENCING WORK.
- 7. ALL WORK AND MATERIALS WHICH DO REPLACEMENT AT THE CONTRACTOR
- 8. WATERMAIN SHALL BE DUCTILE IRON
- SEWER SHALL CONFORM TO ASTM SI CONFORMING TO ASTM-3034, JOINT T
- 10. DO NOT SCALE PLANS FOR CONS
- 11. A WATER MAIN SHALL BE SEPARA CROWN OF THE SEWER WHENEVER V CONNECTIONS. THE VERTICAL SEPAI WITHIN TEN FEET HORIZONTALLY OF CENTERED OVER THE SEWER TO BE
- 2. BOTH THE WATER MAIN AND SEW DUCTILE IRON PIPE EQUIVALENT TO V THE PROPER VERTICAL SEPARATION 12.
- 13. A VERTICAL SEPARATION OF 18 II WATER MAIN SHALL BE MAINTAINED DRAIN LINES TO PREVENT SETTLING
- 14. CONSTRUCTION SHALL EXTEND C WATER MAIN TO THE SEWER OR DRA SEPARATION DESCRIBED ABOVE.
- 15. CONTRACTOR IS TO RESTORE AL

GRAPHIC SCALE	Damas Consulting Group 5625 MIDDAUGH AVE Downers Grove, IL. 60516 Ph 630-991-3299 FAX 630-541-2382 84 Ph 630-991-3299 FAX 630-541-2382 84 84	9
PL PROPERTY LINE LIMITS OF FENCE LINE STORM LINE SOUTH LINE SANTARY LINE SANTARY LINE SANTARY LINE SANTARY LINE SANTARY LINE FFE FINISHED FORCE LEVATION FFE FINISHED FORCE LEVATION FFE FINISHED FORCE LEVATION (FE) FFE FINISHED FORCE LEVATION FFE FORCE LEVATION FFE FORCE LEVATION FFE FORCE FORCE LEVATION <th>DATE DRAWING ISSUE 12-1-17 ISSUED FOR ZONING 12-20-17 ISSUED FOR ZONING 12-20-17 ISSUED FOR ZONING</th> <th></th>	DATE DRAWING ISSUE 12-1-17 ISSUED FOR ZONING 12-20-17 ISSUED FOR ZONING 12-20-17 ISSUED FOR ZONING	
ES: UNDERGROUND UTILITIES SHALL BE OBTAINED FROM ALL UTILITY COMPANIES, FIELD BY THE CONTRACTOR BEFORE STARTING WORK IN THE CONSTRUCTION OF EXISTING STRUCTURES SHALL BE PERFORMED BY HAND. THE CONSTRUCTION NAME AND ALL DAMAGES TO EXISTING FACILITIES, MAINTENANCE AND PROTECTION URES. ALL LINES BEING TIED INTO AND VERIFY GRADES BEFORE ANY CONSTRUCTION. AUGING FOR ANY UTILITY CONSTRUCTION. ISTORED BY THE CONTRACTOR TO THE ORIGINAL CONDITION. IT ALL FEDERAL, STATE AND LOCAL CODES. IL NECESSARY PERMITS AND PAY THE REQUISITE FEES TO THE CITY OF LOMBARD IN ONOT CONFORM TO THE SPECIFICATIONS ARE SUBJECT TO REMOVAL AND RY SEXPENSE. IN FIPE, CLASS 52, CEMENT LINED. IN FIPE, CLASS 52, CEMENT LINED. IN FORM A SEWER SO THAT ITS INVERT IS A MINIMUM OF 18 INCHES ABOVE THE WATER MAINS CROSS STORM SEWERS, SANTARY SEWERS OR SEWER SERVICE WATER MAINS CROSS STORM SEWERS, SANTARY SEWERS OR SEWER SERVICE WATER MAINS CROSS STORM SEWERS, SANTARY SEWERS OR SEWER SERVICE CROSSED WITH JOINTS EQUIDISTANT FROM THE SEWER OR DRAIN. WE SHALL BE CONSTRUCTED OF SLIP-ON OR MECHANICAL JOINT CAST OR WATER MAINS STANDARDS OR CONSTRUCTION WHEN IT IS INPOSSIBLE TO OBTAIN AS DESCRIBED ABOVE, OR THE WATER MAIN PROSSIBLE TO OBTAIN WATER MAINS TANDARDS OR CONSTRUCTION WHEN IT IS INPOSSIBLE TO OBTAIN AS DESCRIBED ABOVE, OR THE WATER MAIN PROSSIBLE TO OBTAIN WATER MAINS STANDARDS OR CONSTRUCTION WHEN IT IS INPOSSIBLE TO OBTAIN AS DESCRIBED ABOVE, OR THE WATER MAIN PROSSIBLE TO OBTAIN AS DESCRIBED ABOVE, OR THE WATER MAIN PROSSIBLE TO OBTAIN AS DESCRIBED ABOVE, OR THE WATER MAIN PROSSIBLE TO OBTAIN AS DESCRIBED ABOVE, OR THE WATER MAIN PROSSIBLE TO OBTAIN AS DESCRIBED ABOVE, OR THE WATER MAIN PROSSIBLE TO OBTAIN AS DESCRIBED ABOVE, OR THE WATER MAIN PROSSIBLE TO OBTAIN AS DESCRIBED ABOVE, OR THE WATER MAIN PROSSIBLE TO OBTAIN AS DESCRIBED ABOVE, OR THE WATER MAIN PROSSIBLE TO OBTAIN AND REAKING THE WATER MAIN. IN AS DESCRIBED ABOVE, OR THE WATER MAIN PROSSES UNDER A SEWER OR DRAIN AND SEWER SERVICE CONNECTION SHALL BE THE	PROPOSED CAR DEALERSHIP 2410 W. OGDEN AVE. Downers Grove, IL 60515	
PROFESSION RECEIPTION	DATE STARTED: DRAWN BY: 07-15-2017 AA JOB NO: FILE NO: SHEET NO: C - 2	

ROPOSED SCOPE: DEMOLISH ER APPLICABLE CODES ADO	H EXISTING	BUII THE	LDING. DESIGN AND CITY OF DOWNERS	BUILD NEW CAR DEALER GROVE	SHIP			
RAWINGS INDEX		F CC	DES DRAWNES INF)EX				
1 PROPOSED SHE PLAN, 1 PROPOSED VEHICLE TUP 1 PROPOSED LANDSCAPE	APPLICAB RNING EXF PLAN	IBIT	JUES, DRAWINGS INL	JEX				
2 PROPOSED FLOOR PLAN 3 PROPOSED EXTERIOR EL	EVATIONS							
5 PROPOSED LIGHTING PH 6 PROPOSED BUILDING PE	OTOMETRI RSPECTIV	CS ES						
CURRENT DOWNERS CR			F DOWNERS G	ROVE				
CURRENT DOWNERS GRO 2015 INTERNATIONAL BI	OVE STOR	WWAT	ER AND FLOOD PLA WITH D.G. AMENDME	IN ORDINANCE				
. 2014 NATIONAL ELECTR . CURRENT STATE OF ILL (INCLUDING WATERSENS	ICAL COD INOINS PL	L WII UMBIN D ED	H D.G. AMENDMENT NG CODE WITH D.G. (TURE REQUIREMENT	AMENDMENTS				
. 2015 INTERNATIONAL M 2015 INTERNATIONAL FU	ECHANICA JEL GAS	L COL	DE WITH D.G. AMENI WITH D.G. AMENDM	DMENTS ENTS				
AND STATE OF ILLINOIS 2015 INTERNATIONAL PI	NERGY CO S AMENDA ROPERTY	NSER IENTS MAIN1	TENANCE CODE WITH	D.G. AMENDMENTS				
0. 2015 INTERNATIONAL FI 1. 2015 INTERNATIONAL SI	RE CODE WIMMING F	WITH POOL	D.G. AMENDMENTS AND SPA CODE WIT	H D.G. AMENDMENTS				
2. 2003 LIFE SAFETY COD 3. CURRENT STATE OF ILL	E (NFPA INOIS ACC	ESSIE	BILITY CODE					
	SIT	E AN		ΑΤΑ				
OCCUPANCY USE			(B) BUSINESS	CONSTRUCTION TYPE		TYPE	2B	
LAND USE, ZONING			COMMERCIAL, B3	1 49 ACPES				
PROPOSED BUILDING GROS	S AREA		7,000 SF	I.TJ AUREO				
TOTAL PROPOSED FIRST FI	LOOR ARE	A	6,376 SF 3,523 SF	2 SPACES PER 1,000 S	SQ. FT.	7 SF	ACES	
PROPOSED SECOND FLOOR			1,300 SF	· · ·				
LOT COVERAGE LANDSCAPE AREA & PERC	ENTAGE		11% 12,648 SF (20%)					
STREET YARD OPEN SPACE	E		6,261 SF (9.6%)					
COMME	RCIAL	/EHI	ICLE SALES PA	RKING REQUIREME	ENTS			
DESCRIPTION SHOWROOM AREA	AREA SF 3.523	2 SI	DE PACES PER 1.000 S	F OF SHOWROOM AREA	REQUIR 7	ED	PROVIDED 5	
OUTDOOR DISPLAY AREA	8,424	0.4	SPACES PER 1,000	SF OF OUTDOOR AREA	4		52	
GUEST PARKING	5 BAYS	2 SI NOT	NCLUDED IN OVER	ALL SUBTOTAL	10		14 26	
EMPLOYEE PARKING		NOT	INCLUDED IN OVER	ALL SUBTOTAL	- 21	_	8	
 MINIMUM MOTOR VEHICLE 2 SPACES PER 1,000 1,000 SQ.FT. OF OUTDO BAY 	E PARKING SQ. FT. C DOR DISPL	F SH AY S	DUIREMENT AS FOLL OWROOM AREA, PLU PACE, PLUS 2 CAR	OWS; IS 0.4 SPACES S PER SERVICE	21		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		GE	ENERAL NOTES	3			_	
1. ALL WORK SHALL C VILLAGE OF DOWNE	ONFORM	TO TH E & T	HE APPLICABLE COD THE STATE OF ILLIN	ES AND ORDINANCES OF OIS ACCESSIBILITY CODE	THE			
2. ALL WORK SHALL C EXPRESSED IN THE	DRAWING	IO II IS WH	ICH FORM A PART	OF THE CONTRACT DOCU	JMENTS			
J. START OF THE WOR THE EXISTING SITE	CONDITIO	NS	VIRACIURS SHALL	DIGINIFIT THE ACCEPTANC				
 ALL DEBRIS AND W OF THE PREMISES OF THE CONTRACT EXCEPT FOR EXIST 	ASTE MAT AND LEG/ OR AND E ING MATE	ERIAL ALLY DISPO: RIALS	S AND EQUIPMENT DISPOSED OF. ALL SAL OF SUCH ITEMS PROPOSED FOR RE	SHALL BE TRANSPORTED TEMS SHALL BECOME THE SHALL BECOME THEIR) OFF IE PROPI RESPONS	ERTY SIBILIT	Y	
5. THE ARCHITECT SHALL NOT BE RESPONSIBLE FOR CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, PROCEDURES OR FOR ANY SAFETY PRECAUTIONS AND PROGRAMS IN CONNECTION WITH THIS PROJECT								
6. THE ARCHITECT SHALL NOT BE RESPONSIBLE FOR ANY ADDITIONAL EXPENDITURES THAT MIGHT BE NECESSARY AFTER CONSTRUCTION BEGINS								

Page 20 of 99

Page 21 of 99

LEGEND OF SYMBOLS								
SYMBOL	NAME	ACTUAL NAME	MATURE HEIGHT					
	CANOPY TREE	AUTUMN BLAZE RED MAPLE	30-40 FT.					
	EVERGREEN TREE	EMERALD GREEN ARBOVITAE	12-14 FT.					
+	UNDERSTORY TREE	BLOODGOOD JAPANESE MAPLE	10–15 FT.					
Ø	EVERGREEN SHRUB	GREEN VELVET BOXWOOD	4-6 FT.					
Ġ	DECIDUOUS SHRUB	DIABLO NINE BARK	6-8 FT.					
	MULCH	HARDWOOD MU TO 3 INCHES SOIL PLANTING	JLCH CHIPS 2 DEEP WITHIN G BEDS.					
	PERENNIALS	CREEPING THYME	3 INCHES					
	GRASS	CLASS 1 LAW PER IDOT SPE FOR SEED W/ SOD PLANTING	N MIXTURE CIFICATION STRAW OR					
	PROPERTY LINE							
	SETBACK LINE							
	CENTER RIGHT OF WAY							
	BUILDINGS							
	CONCRETE SIDEWALK							

NOTE: THE ABOVE LANDSCAPE BLOCKS DEPICT THE WIDTH OF THE CANOPY AT MATURITY. LANDSCAPE PLANS SUBMITED TO THE CITY OF AURORA FOR APPROVAL MUST BE SCALED TO DEPICT THE WIDTH OF CANOPY AT THE TIME OF INSTALLATION.

LANDSCAPE NOTES:

- ALL ORNAMENTAL TREES SHALL BE AT LEAST 4 FEET IN HEIGHT AT THE TIME OF INSTALL.
 ALL SHADED TREES SHALL BE AT LEAST 2.5 INCH CALIPER AT THE TIME OF INSTALL.
 ALL PLANTING SCHRUBS SHALL BE AT LEAST 8 INCHES IN HEIGHT AT THE TIME OF INSTALL.
 ALL ORNAMENTAL PLANTINGS (GRASSES AND PERENNIALS SHALL BE AT LEAST 12 INCHES IN HEIGHT AT THE TIME OF INSTALL.

Page 22 of 99

Page 24 of 99

PROPOSED EXTERIOR ELEVATIONS

Page 25 of 99

PRECISION SERIES WALL PANELS

PRODUCT FEATURES

- No-clip panel or clip installation for expansion/contraction
- Multiple rib patterns provide a variety of looks and design options
- Panel depth of 1-3/8"
- Cost-effective installation
- Horizontal or vertical installation
- Panel lengths: 30' maximum for steel; 22' maximum for aluminum; longer lengths available on clip panels; 4' min. steel and aluminum

MATERIAL

- 15 stocked colors (22 gauge steel)
- 29 stocked colors (.050 aluminum)
- Galvalume Plus available

TESTS

- ASTM E283
- ASTM E331

FLORIDA BUILDING PRODUCT APPROVALS

Please refer to pac-clad.com or your local factory for specific product approval numbers for Precision Series panels.

Note: Line drawings may not be to scale.

COMPOSITE WALL PANELS

PAC-3000 RS

PAC-3000 CS

PRODUCT FEATURES

- Available in a wide variety of non-PAC-CLAD colors and finishes
- Consult Petersen rep for color options (extra fee applies for PAC-CLAD colors)
- Precise fabrication to meet exacting tolerances
- Rout-and-return fabrication
- Welded corners available

MATERIALS

- 3mm, 4mm, 6mm Composite
- .063 .125 Mill Finish Aluminum
- Zinc
- Stainless steel
- Anodized aluminum

TESTS

- ASTM E283*
- ASTM E330*
- ASTM E331*
- * Composite material only

Schedule Symbol	Label	Quantity	y Manufacturer	Catalog Number	Description	Lamp	Number Lamps	Filename	Lumens Per Lamp	Light Loss Factor	Wattage	Statistics Description
	T1S	2	Lithonia Lighting	DSX2 LED P8 40K T1S MVOLT	DSX2 LED P8 40K T1S MVOLT	LED	1	DSX2_LED_P8_40K_T1S_MVOLT.ies	49133	0.95	431	1. PAVED AREAS O 2. WHOLE PARCEL GRADE LEVEL
	BLC	4	Lithonia Lighting	DSX2 LED P8 40K BLC MVOLT	DSX2 LED P8 40K BLC MVOLT	LED	1	DSX2_LED_P8_40K_BLC_MVOLT.ies	40324	0.95	431	3. BEYOND PROPER 4. WEST PROPERT 5. NORTH PROPER
	RCCO	2	Lithonia Lighting	DSX2 LED P8 40K RCCO MVOLT	DSX2 LED P8 40K RCCO MVOLT	LED	1	DSX2_LED_P8_40K_RCCO_MVOLT.ies	30005	0.95	431	6. EAST PROPERTY 7. SOUTH PROPER
	LCCO	2	Lithonia Lighting	DSX2 LED P8 40K LCCO MVOLT	DSX2 LED P8 40K LCCO MVOLT	LED	1	DSX2_LED_P8_40K_LCCO_MVOLT.ies	30005	0.95	431	NOTES: 1. CALCULATION PI 2. FIXTURES ARE N 3. CACULATIONS P

Y - GRADE L O PROPERTY L Y LINE - 15' Z LINE LINE INE LINE (OGDEN

**This document contains confidential and proprietary information of KSA Lighting & Controls. This loghting & Controls representatives and customers. FOR LIGHTING DESIGNS This lighting design is not a professional engineering drawing and is provided for informational purposes only, without warranty as to accuracy, completeness, relability or otherwise. KSA Lighting & Controls is not responsible for specifying the lighting or illumination requirements. It is the obligation of the end-user to consult with a professional engineering advisor to determine whether this lighting design meets for lighting design meets for lighting design controls. This second engineering advisor to determine whether this lighting design meets for lighting design controls is not exponsible for applicable project requirements. It is the obligation of the end-user to consult with a professional engineering advisor to determine whether this lighting design meets the applicable project requirements for lighting design is not and applicable project requirements for lighting design is not and applicable project requirement for lighting design is not and applicable project requirements for lighting design is not and applicable project requirements for lighting design is not and applicable project requirements for lighting design is not and applicable project requirements for lighting design is not and applicable project requirement for lighting design is not and applicable project requirement for lighting design is not and applicable project requirement for lighting design is not explicit to, voltage evaniation and dirt accumulation. End-user or customer end replication. End-user or customer and application. End-user or customer end replication explication and application application. End-user or customer end replication application and application application. End-user or customer end replication application application. End-user or cus ation. Field

	Symbol	Avg	Max	Min	Max/Min	Avg/Min
VEL	ж	6.1 fc	28.0 fc	0.0 fc	N/A	N/A
INES -	+	5.7 fc	28.0 fc	0.0 fc	N/A	N/A
ONE	♦	0.5 fc	4.2 fc	0.0 fc	N/A	N/A
		0.1 fc	0.4 fc	0.0 fc	N/A	N/A
		0.3 fc	0.8 fc	0.0 fc	N/A	N/A
		0.3 fc	1.2 fc	0.0 fc	N/A	N/A
AVE.)		2.4 fc	4.9 fc	0.0 fc	N/A	N/A

INTS ARE AT GRADE LEVEL. DUNTED AT 23'-0" ABOVE GRADE (20' POLES ON 3' CONCRETE BASES). OVIDED ARE NOT A GUARANTEE OF PERFORMANCE. ACTUAL LIGHT LEVELS

ARCHITIECTURE	DI PLANNING				PHORMA DESIGNS, INC.	PHE 602 2295408 FAX: 630.982.3795 FAX: 630.982.3795	2020 UARDINER CIR. E. 31E.1 AURORA, IL. 00202		
	NS	V.		LIGHTING & CONTROLS					
CL	IEN	T:							
AR	CH	hese dra	CT	LIC	C.:	red			
knowled and State Three p direct an and state and to th in confor (410 ILC III. Adm. LIC	Theody call, failed densing how how payment makering officat supports and a lack host of ex- and State of Himsel." Theory preprode, and cannot be prepared under our and State of Himsel. " Theory prepared, and cannot be prepared under our and date that, is the host of any knowledge and host of the state of the constrained addigation, they are all date that, is the host of any knowledge and host of 100 ECS 30, and he Himsel Accountibly Cale (1) LAC (Cale NO)."								
TO DEALERSHIP AT		OGDEN AVE.	NERS GROVE II			P. LIGHTING PHOLOMETRICS			
NEW AU	0 0 1 1 0	2410				D X Z			
NEW AU	BY	PC 2410	MOD			סאל			
REVISIONS NEW AU	DESCRIPTION BY	ZONING REVIEW PC 2410	MOU			DX4			
REVISIONS NEW AU	NO. DATE DESCRIPTION BY	▲ 12-14-17 ZONING REVIEW PC 2410							
NEW AU	TA V V V V V V V V V V V V V V V V V V V	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	MC	Q: 01. 3Y:	□ □ □ □ □ □ □ □ □ □ □ □ □ □		3		

D-Series Extreme Cutoff Optics Product Launch

BLC Optics – (From Above)

ScuityBrands.

Traffic Impact Study Proposed Used Car Dealership

Downers Grove, Illinois

1. Introduction

This report summarizes the methodologies, results, and findings of a traffic impact study conducted by Kenig, Lindgren, O'Hara, Aboona, Inc. (KLOA, Inc.) for the proposed used car dealership to be located on the north side of Ogden Avenue approximately 600 feet east of Cross Street in Downers Grove, Illinois. As proposed, the site will be developed with an approximately 7,000 square-foot building with an approximately 3,500 square-foot showroom and a five-bay service center. Access to the development will be provided via the existing westerly full movement curb cut serving the site. A total of 101 parking spaces will be provided with 30 spaces reserved for guest parking.

The purpose of this study was to examine background traffic conditions, assess the impact that the proposed development will have on traffic conditions in the area, and determine if any roadway or access improvements are necessary to accommodate traffic generated by the proposed development.

Figure 1 shows the location of the site in relation to the area roadway system. Figure 2 shows an aerial view of the site area.

The sections of this report present the following:

- Existing roadway conditions
- A description of the proposed development
- Directional distribution of the development traffic
- Vehicle trip generation for the development
- Future traffic conditions including access to the development
- Traffic analyses for the weekday morning and weekday evening peak hours
- Recommendations with respect to adequacy of the site access and adjacent roadway system

Traffic capacity analyses were conducted for the weekday morning and weekday evening peak hours for the following conditions:

- 1. Existing Condition Analyzes the capacity of the existing roadway system using existing peak hour traffic volumes in the surrounding area.
- 2. Future Condition The future projected traffic volumes include the existing traffic volumes increased by an ambient area growth factor (growth not attributable to any particular development) and the traffic estimated to be generated by the proposed subject development.

Site Location

Figure 1

Aerial View of Site Location

Figure 2

2. Existing Conditions

Existing transportation conditions in the vicinity of the site were documented based on a field visit conducted by KLOA, Inc. in order to obtain a database for projecting future conditions. The following provides a description of the geographical location of the site, physical characteristics of the area roadway system including lane usage and traffic control devices, and existing peak hour traffic volumes.

Site Location

The site, which is currently occupied by a vacant building, is located on the north side of Ogden Avenue approximately 600 feet east of Cross Street. Land uses in the vicinity of the site are primarily commercial to the west, north, and east and residential to the south and include Gerber Collision and Glass to the east, Premier Auto Auctions, Riggs Brothers Tops and Interiors, R & D Fence, and the Downers Grove Park District to the north, Max Madsen Mitsubishi and Culvers to the west, and Auto Extreme, Inc. and Fairway Grove Condominiums to the south.

Existing Roadway System Characteristics

The characteristics of the existing roadways near the development are described below. **Figure 3** illustrates the existing roadway characteristics.

Ogden Avenue is generally an east-west arterial roadway that in the vicinity of the site provides two through lanes in each direction separated by a center, two-way left-turn lane. At its signalized intersection with Cross Street, Ogden Avenue provides an exclusive left-turn lane and two exclusive through lanes on the eastbound approach and an exclusive through lane and a shared through/right-turn lane on the westbound approach. At its unsignalized intersection with the Max Madsen Mitsubishi access drive, Ogden Avenue provides two exclusive through lanes on the eastbound approach. At its unsignalized intersection with the Max Madsen Mitsubishi access drive, Ogden Avenue provides two exclusive through lanes on the eastbound approach and an exclusive through lane and a shared through/right-turn lane on the westbound left-turn movements accommodated via the center, two-way left-turn lane. At its unsignalized intersection with the Gerber Collision & Glass and Fairway Grove access drives, Ogden Avenue provides an exclusive through lane and a shared through/right-turn lane on both approaches with left turns onto the access drives accommodated via the existing center, two-way left-turn lane. Ogden Avenue is under the jurisdiction of the Illinois Department of Transportation (IDOT), carries an annual average daily traffic volume (AADT) volume of 30,600 vehicles (IDOT AADT 2016), and has a posted speed limit of 35 miles per hour east of Cross Street and a posted speed limit of 40 miles per hour west of Cross Street.

Cross Street is a north-south local roadway that has an offset intersection with Ogden Avenue. The north leg of the intersection extends from Ogden Avenue to Warrenville Road, provides access to the commercial developments along Cross Street, and has signalized intersections with both roadways. At its signalized intersection with Ogden Avenue, the north leg of Cross Street provides an exclusive left-turn lane, an exclusive right-turn lane, and a standard style crosswalk. The south leg of this intersection is the full movement access drive serving Auto Extreme, Inc. This access drive provides one inbound lane and one outbound lane. Cross Street is under the jurisdiction of the DuPage County Division of Transportation, carries an AADT volume of 7,442 vehicles (DuDOT AADT 2010), and has a posted speed limit of 30 miles per hour.

Existing Traffic Volumes

In order to determine current traffic conditions in the vicinity of the site, KLOA, Inc. conducted peak period traffic counts using Miovision Scout Video Collection Units on Wednesday, November 15, 2017 during the weekday morning (7:00 A.M. to 9:00 A.M.) and weekday evening (4:00 P.M. to 6:00 P.M.) peak periods at the following intersections:

- Ogden Avenue with Cross Street/Auto Extreme, Inc. Access Drive
- Ogden Avenue with the Max Madsen Mitsubishi Access Drive
- Ogden Avenue with Fairway Grove/Gerber Collision and Glass Access Drives

The results of the traffic counts showed that the weekday morning peak hour of traffic occurs from 7:15 A.M. to 8:15 A.M. and the weekday evening peak hour of traffic occurs from 4:30 P.M. to 5:30 P.M. **Figure 4** illustrates the existing peak hour traffic volumes. Copies of the traffic count summary sheets are included in the Appendix.

Crash Analysis

KLOA, Inc. obtained crash data for the past five years (2010 to 2014) for the intersections of Ogden Avenue with Cross Street, Ogden Avenue with the Max Madsen Mitsubishi access drive, and Ogden Avenue with the Gerber/Fairway Grove access drives. The crash data for the intersection of Ogden Avenue with Cross Street is summarized in **Table 1**. A review of the crash data indicated that the intersection of Ogden Avenue with the Max Madsen Mitsubishi access drive experienced only one crash in 2011, 2012, and 2015 and zero crashes in 2013 and 2014. Only one crash involved a turning vehicle at this intersection. Furthermore, the intersection of Ogden Avenue with the Gerber/Fairway Grove access drives experienced zero crashes in 2011 and 2015, one crash in 2012 and 2014, and two crashes in 2013. None of the crashes at this intersection involved a turning vehicle. Additionally, the crash data indicated there were no fatalities reported at any of the intersections.

			Type of	Crash Frequ	ency		
Year	Angle	Object	Rear End	Sideswipe	Turning	Other	Total
2011	0	0	2	0	2	0	4
2012	0	0	1	0	0	0	1
2013	0	0	1	0	3	0	4
2014	0	0	3	0	2	0	5
2015	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>4</u>	<u>0</u>	<u>4</u>
Total	0	0	7	0	11	0	18
Average	0	0	1.4	0	2.2	0	3.6

Table 1 OGDEN AVENUE WITH CROSS STREET – CRASH SUMMARY

DISCLAIMER: The motor vehicle crash data referenced herein was provided by the Illinois Department of Transportation. The author is responsible for any data analyses and conclusions drawn.

3. Traffic Characteristics of the Proposed Development

In order to properly evaluate future traffic conditions in the surrounding area, it was necessary to determine the traffic characteristics of the proposed development, including the directional distribution and volumes of traffic that it will generate.

Proposed Site and Development Plan

As proposed, the plans call for developing the site with an approximately 7,000 square-foot used car dealership that will provide an approximately 3,500 square-foot showroom. Additionally, a five-bay service center will be provided. Access to the used car dealership will be provided via the existing full movement curb cut that is located approximately 250 feet east of the Max Madsen Mitsubishi full movement access drive. This access drive provides one inbound lane and one outbound lane and outbound movements should be under stop sign control. Left turns onto the access drive will be accommodated via the existing center, two-way left-turn lane on Ogden Avenue. It should be noted that the proposed access system will result in the elimination of the existing easterly full movement curb cut on Ogden Avenue along the site frontage. A total of 101 parking spaces will be provided with 30 spaces reserved for guest parking. A copy of the preliminary site plan depicting the proposed development and access is included in the Appendix.

Directional Distribution

The directions from which employees and patrons of the used car dealership will approach and depart the site were estimated based on existing travel patterns, as determined from the traffic counts. **Figure 5** illustrates the directional distribution of the development-generated traffic.

Estimated Site Traffic Generation

The estimates of traffic to be generated by the development are based upon the proposed land use type and size. The volume of traffic generated for the auto dealership was estimated using data published in the Institute of Transportation Engineers (ITE) *Trip Generation Manual*, 9th Edition. The ITE rates and equations used are included in the Appendix. **Table 2** tabulates the vehicle trips anticipated for this development for the weekday morning and weekday evening peak hours.

ITE Land		Weel	kday M Peak Ho	orning our	Wee	kday E Peak He	vening our	Daily Two-Way
Use Code	Type/Size	In	Out	Total	In	Out	Total	Trips
841	Auto Dealership (7,000 s.f.)	10	3	13	7	11	18	226

Table 2 ESTIMATED SITE-GENERATED TRAFFIC VOLUMES

4. Projected Traffic Conditions

The total projected traffic volumes include the existing traffic volumes, increase in background traffic due to growth, and the traffic estimated to be generated by the proposed subject development.

Development Traffic Assignment

The estimated weekday morning and evening peak hour traffic volumes that will be generated by the proposed development were assigned to the roadway system in accordance with the previously described directional distribution (Figure 5). The total new traffic assignment for the commercial development is illustrated in **Figure 6**.

Background Traffic Conditions

The existing traffic volumes (Figure 4) were increased by a regional growth factor to account for the increase in existing traffic related to regional growth in the area (i.e., not attributable to any particular planned development). Based on ADT projections provided by the Chicago Metropolitan Agency for Planning (CMAP) in a letter dated December 11, 2017, an increase of approximately four-tenths of a percent per year for six years (buildout year plus five years) was applied to project Year 2023 conditions. A copy of the CMAP 2040 projections letter is included in the Appendix.

Total Projected Traffic Volumes

The development-generated traffic was added to the existing traffic volumes accounting for background growth to determine the Year 2023 total projected traffic volumes, shown in **Figure 7**.

5. Traffic Analysis and Recommendations

The following provides an evaluation conducted for the weekday morning and weekday evening peak hours. The analysis includes conducting capacity analyses to determine how well the roadway system and access drives are projected to operate and whether any roadway improvements or modifications are required.

Traffic Analyses

Roadway and adjacent or nearby intersection analyses were performed for the weekday morning and weekday evening peak hours for the existing (Year 2017) and future projected (Year 2023) traffic volumes.

The traffic analyses were performed using the methodologies outlined in the Transportation Research Board's *Highway Capacity Manual (HCM), 2010* and analyzed using the HCS 7 computer software. The analyses for the intersection of Ogden Avenue with Cross Street were completed utilizing actual cycle lengths and phasings.

The analyses for the unsignalized intersections determine the average control delay to vehicles at an intersection. Control delay is the elapsed time from a vehicle joining the queue at a stop sign (includes the time required to decelerate to a stop) until its departure from the stop sign and resumption of free flow speed. The methodology analyzes each intersection approach controlled by a stop sign and considers traffic volumes on all approaches and lane characteristics.

The ability of an intersection to accommodate traffic flow is expressed in terms of level of service, which is assigned a letter from A to F based on the average control delay experienced by vehicles passing through the intersection. The *Highway Capacity Manual* definitions for levels of service and the corresponding control delay for signalized intersections and unsignalized intersections are included in the Appendix of this report.

Summaries of the traffic analysis results showing the level of service and overall intersection delay (measured in seconds) for the existing and Year 2023 total projected conditions are presented in **Tables 3** and **4**, respectively. A discussion of the intersections follows. Summary sheets for the capacity analyses are included in the Appendix.

Table 3

CAPACITY ANALYSIS RESULTS – EXISTING TRAFFIC CONDITIONS

	Weekday Peak	' Morning Hour	Weekday Peak	v Evening Hour
Intersection	LOS	Delay	LOS	Delay
Ogden Avenue with Cross Street/Auto Extrem	ne, Inc. Acc	cess Drive ¹		
• Overall	А	9.5	Е	64.4
Eastbound Approach	А	1.5	А	4.2
Westbound Approach	А	5.9	В	16.0
Northbound Approach	D	48.9	D	41.9
Southbound Approach	F	84.7	F	99+
Ogden Avenue with Max Madsen Mitsubishi	Access Dri	ve ²		
Southbound Approach	В	14.2	С	24.7
Westbound Left Turns	В	12.2	С	17.3
Ogden Avenue with Gerber/Fairway Grove A	ccess Drive	es ²		
Northbound Approach	F	55.7	D	30.7
Southbound Approach	Е	47.7	D	32.0
• Eastbound Left Turns	В	12.1	С	17.2
Westbound Left Turns	С	18.5	С	15.8
LOS = Level of Service Delay is measured in seconds. 1 – Signalized Access Drive 2 – Unsignalized Access Drive				

Table 4

CAPACITY ANALYSIS RESULTS - YEAR 2023 PROJECTED TRAFFIC CONDITIONS

	Weekday Peak	Morning Hour	Weekday Peak	⁷ Evening Hour
Intersection	LOS	Delay	LOS	Delay
Ogden Avenue with Cross Street/Auto Extre	eme, Inc. Acc	cess Drive ¹		
• Overall	В	10.0	Е	68.3
Eastbound Approach	А	1.6	А	4.3
Westbound Approach	А	6.1	В	17.4
Northbound Approach	D	48.9	D	42.0
Southbound Approach	F	89.5	F	99+
Ogden Avenue with Max Madsen Mitsubish	ni Access Dri	ve ²		
Southbound Approach	В	14.5	С	25.9
• Westbound Left Turns	В	12.4	С	17.9
Ogden Avenue with Gerber/Fairway Grove	Access Drive	es^2		
Northbound Approach	F	60.7	D	32.4
Southbound Approach	Е	50.4	D	33.8
• Eastbound Left Turns	В	12.4	С	17.8
• Westbound Left Turns	С	19.2	С	16.3
Ogden Avenue with Proposed Full Moveme	nt Access Dr	rive ²		
Southbound Approach	С	21.8	Е	36.0
Westbound Left-Turns	В	12.4	С	17.8
LOS = Level of Service Delay is measured in seconds. 1 – Signalized Access Drive 2 – Unsignalized Access Drive				

Discussion and Recommendations

The following summarizes how the intersections are projected to operate and identify any roadway and traffic control improvements to accommodate the development traffic.

Ogden Avenue with Cross Street

The results of the capacity analysis indicate that overall this intersection currently operates at level of service (LOS) A during the weekday morning peak hour and at LOS E during the weekday evening peak hour. It should be noted that the delays experienced during the weekday evening peak hour are a result of the southbound approach which operates at LOS F during the weekday evening peak hour due to the limited amount of greentime allocated to this approach. Under Year 2023 projected conditions, this intersection overall is projected to operate at LOS B during the weekday morning peak hour with increases in delay of less than one second and is projected to continue operating at LOS E during the weekday evening peak hours with increases in delay of approximately four seconds. It should be noted that the increases in delay at this intersection are primarily due to the increase in background growth as the proposed development is projected to increase the volume of traffic traversing this intersection by less than one-half percent. As such, the proposed development traffic will have a limited impact on the operations of this intersection.

Ogden Avenue with Max Madsen Mitsubishi Access Drive

The results of the capacity analysis indicate that the southbound approach currently operates at LOS B during the weekday morning peak hour and at LOS C during the weekday evening peak hour. Under Year 2023 conditions, the southbound approach will continue to operate at existing levels of service during the peak hours with increases in delay of approximately one second or less. Additionally, eastbound left-turns onto the access drive are projected to continue operating at LOS B during the weekday morning peak hour and at LOS C during the weekday evening peak hour with increases in delay of less than one second and 95th percentile queues of one to two vehicles. As such, the proposed development traffic will have a limited impact on the operations of this intersection and no roadway or traffic control improvements will be required.

Ogden Avenue with Gerber/Fairway Grove Access Drives

The results of the capacity analysis indicate that the northbound approach currently operates at LOS F during the weekday morning peak hour and at LOS D during the weekday evening peak hour. Additionally, the southbound approach currently operates at LOS E during the weekday morning peak hour and at LOS D during the weekday evening peak hour. However, this level of service is expected for access driveways that have unsignalized intersections with major roadways such as Ogden Avenue. Under Year 2023 projected conditions, the northbound and southbound approaches are projected to continue operating at existing levels of service during the peak hours with increase in delay of approximately five seconds or less. Additionally, eastbound and westbound left-turns onto the access drives are projected to continue operating at LOS C or better during the peak hours with increases in delay of less than one second and 95th percentile queues of one to two vehicles. As such, the proposed development traffic will have a limited impact on the operations of this intersection and no roadway or traffic control improvements will be required.

Ogden Avenue with Proposed Full Movement Access Drive

The results of the capacity analysis indicate that outbound movements from the proposed access drive are projected to operate at LOS C during the weekday morning peak hour and at LOS E during the weekday evening peak hour with 95th percentile queues of one to two vehicles. As previously indicated, this LOS is expected for access driveways that have an unsignalized intersection with a major roadway such as Ogden Avenue. Additionally, eastbound left-turns onto the access drive are projected to operate at LOS B during the weekday morning peak hour and at LOS C during the weekday evening peak hour with 95th percentile queues of one to two vehicles which can be accommodated within the existing center, two-way left-turn lane. As such, the proposed access driveway will be adequate in accommodating the traffic projected to be generated by the proposed development

6. Conclusion

Based on the preceding analyses and recommendations, the following conclusions have been made:

- The proposed development will generate a low volume of traffic, approximately 13 trips during the weekday morning peak hour and 18 trips during the weekday evening peak hour.
- The development-generated traffic will not have a significant impact on area roadways.
- Providing a single full movement access drive off Ogden Avenue will be adequate in accommodating the traffic projected to be generated by the proposed development and will eliminate an existing curb cut on Ogden Avenue along the site frontage.

Appendix

Traffic Count Summary Sheets ITE Rates and Equations Site Plan CMAP 2040 Projections Letter Level of Service Criteria Capacity Analysis Summary Sheets

Traffic Count Summary Sheets

			Int. Total	759	869	855	870	3353	760	762	266	774	3095		907	862	902	927	3598	006	976	888	825	3589	13635	•		13419	98.4	20	0.5	100	0.7	46	0.3	0	0.0	1
			App. Total	54	60	62	91	267	47	61	58	48	214		166	128	170	133	597	149	144	125	126	544	1622		11.9	1600	98.6	9	6.4	13	0.8	в	0.2	0	0.0	
			Peds	0	0	0	0	0	0	0	0	0	0		0	0	-	0	-	0	0	0	0	0	-					ī	,		ı		ı	-	,	-
:017		treet	Right	8	5	з	5	21	5	8	11	8	32		47	24	44	24	139	23	23	17	21	84	276	17.0	2.0	271	98.2	0	0.0	5	1.8	0	0.0	0	0.0	
11/15/2		Cross S Southbe	Thru	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0		0		0	ı	0		0	,	
e Code: art Date: ge No: `			Left	46	55	59	86	246	42	53	47	40	182		119	104	126	109	458	126	121	108	105	460	1346	83.0	9.9	1329	98.7	9	0.4	8	0.6	з	0.2	0	0.0	
			U-Tum	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0		0	,	0	ı	0		0	,	
			App. Total	0	0	0	2	2	0	0	0	-	-		3	0	-	-	5	0	2	-	-	4	12		0.1	12	100.0	0	0.0	0	0.0	0	0.0	0	0.0	
			Peds	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	-	-	0	1	3	e			,					ı	,	ı		ı	e
		rive nd	Right	0	0	0	1	1	0	0	0	-	-		2	0	0	+	С	0	٢	-	+	3	8	66.7	0.1	80	0.00	0	0.0	0	0.0	0	0.0	0	0.0	
		Access Di Northbou	Thru	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0		0	,	0		0		0		1
0018	ita		Left	0	0	0	0	0	0	0	0	0	0		1	0	+	0	2	0	1	0	0	1	3	25.0	0.0	3	0.00	0	0.0	0	0.0	0	0.0	0	0.0	
States 6	int Da		Tum	0	0	0	1	1	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	-	8.3	0.0	-	00.0	0	0.0	0	0.0	0	0.0	0	0.0	1
United 5	veme		otal U	300	308	305	348	261	323	328	359	359	369		461	461	427	199	848	460	474	489	423	846	324		6.4	222	8.4	35	0.6	41	0.6	26	0.4	0	0.0	
Illinois, (847)5	g Mo	1	eds /	0	0	0	0	0 1	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0 1	0		-	9					1		1	-	1	0
semont,	urnin	d d	ight P	31	38	06	07	26	98	98	04	39	89		53	71	32	31	47	56	33	71	44	34	196	8.9	3.8	188	9.3	4	.3	4	.3	0	0.0	0	0.0	
Ro	Η	gden Aver Westboun	JIU R	39 (40 (15 9	41 1	35 3	25 9	30	55 1	69	79 3		90	89	65 (38 (598 2	03	11	18	, 67	311 2	23 1	1.0 1.	3.6 8	1.	3.2	31	9.	37	.7 0	26	.5 (0	0.0	
		0	eft TI	0 2	0 2	0 2	0 2	6 0	0	0	0 2	1 2	9		4	3	3	9 4	3 15	4	4	4	3	1 16	5 51	.1	.0 3.	5	0.0	0	0		0 0	0	0 0	0	0	
			lurn Le	0	0	0	0	0	0	0	0				0		0	0	0		0	0	0	0	0	0 0.	0	0	- 10	0	0	0	-	0	- 0	0	0	
			pp.	05 0	01 0	88	29 0	323 0	06	73	82	96	511		27	73	04	94	48	91	56	73	75 (95	217	•	0 9.1	85	4.8	6	.5	9	8.	7	.3	0	0.	
			eds Al	4	0 5	4	4	1 18	3	3	3	3	15		0 2	0	3	0	11	0	3	0	0 2	11	2 56		- 4	- 56	- 6		0	-	-		-	-	0	2
		- . -	ght Pe	0	0	0	0	0	0		-	-			0			0	~	0	-		0	-	10	1	0.	10	0.0		0	0	0	0	0	0	0	
		Cross Stree Eastbound	E R	91 0	36 (34 (33 (44 (60	4	4	37	84		60	34	35 (31 (60	.9	15	51	58	43	80	.8	.5 0	06	.3 10	6	5 0	5	8 0	9	3 0	0	0 0	
		0 -	ft Th	4 36	5 46	3 46	3 40	3 17.	36	9 34	7 34	33	5 13		26	26	26	3 26	111	2 27	34	26	7 25	11	1 53	1 94	1 39	9 52	.3 98	20	0	4	3 0.	7	3 0.	0	0.	
			rm Le	1	16	23	26	78	ά	56	37	28	12	'	9	6	6	10	37	1	10	1	1	5,	29	0 5.	2.	28	0.099	0	0	-	0.0	-	0.	0	0	
			U-Tı	0	0	-	0	1	0	0	0	0	0	'	0	0	0	0	0	0	0	0	0	0	-	0.0	0.0	-	100	0	0.0	ks 0	t 0.0	ks 0	0.0	ad 0	0.0	'
			Start Time	7:00 AM	7:15 AM	7:30 AM	7:45 AM	Hourly Total	8:00 AM	8:15 AM	8:30 AM	8:45 AM	Hourly Total	*** BREAK **	4:00 PM	4:15 PM	4:30 PM	4:45 PM	Hourly Total	5:00 PM	5:15 PM	5:30 PM	5:45 PM	Hourly Total	Grand Total	Approach %	Total %	Lights	% Lights	Buses	% Buses	Single-Unit Truc	% Single-Unit Trucks	Articulated Truc	% Articulated Trucks	Bicycles on Ro	% Bicycles or Road	Pedestrians

Count Name: Ogden Avenue with Cross Street

ORD	201	8-7	654

KLOŻ	lig Lindgren O'Hara Aboona, Inc.
Kenig	Kenig

9575 W. Higgins Rd., Suite 400 Rosemont, Illinois, United States 60018 (847)518-9990

Count Name: Ogden Avenue with Cross Street Site Code: Start Date: 11/15/2017 Page No: 3

		Int. Total	869	855	870	760	3354			0.964	3280	97.8	30	0.9	31	0.9	13	0.4	0	0.0		
		App. Total	60	62	91	47	260		7.8	0.714	253	97.3	2	0.8	3	1.2	2	0.8	0	0.0		
		Peds	0	0	0	0	0		-			-			-				-		0	I
	treet	Right	5	3	5	5	18	6.9	0.5	0.900	16	88.9	0	0.0	2	11.1	0	0.0	0	0.0		
	Cross S Southbo	Thru	0	0	0	0	0	0.0	0.0	0.000	0		0		0		0		0			
		Left	55	59	86	42	242	93.1	7.2	0.703	237	97.9	2	0.8	1	0.4	2	0.8	0	0.0	-	1
		U-Tum	0	0	0	0	0	0.0	0.0	0.000	0	-	0		0		0		0		-	1
		App. Total	0	0	2	0	2		0.1	0.250	2	100.0	0	0.0	0	0.0	0	0.0	0	0.0		1
		Peds	0	0	0	0	0		-			-			-				1		0	I
AM)	Drive	Right	0	0	1	0	1	50.0	0.0	0.250	1	100.0	0	0.0	0	0.0	0	0.0	0	0.0	-	1
7:15/	Access	Thru	0	0	0	0	0	0.0	0.0	0.000	0	-	0		0		0		0		-	1
ata (Left	0	0	0	0	0	0.0	0.0	0.000	0		0		0		0		0			
lour D		U-Tum	0	0	1	0	1	50.0	0.0	0.250	1	100.0	0	0.0	0	0.0	0	0.0	0	0.0		1
eak F		App. Total	308	305	348	323	1284		38.3	0.922	1250	97.4	12	0.9	15	1.2	7	0.5	0	0.0		1
ent P		Peds	0	0	0	0	0	-	-			-		-	-				-		0	1
ovem	venue	Right	68	06	107	98	363	28.3	10.8	0.848	361	99.4	0	0.0	2	0.6	0	0.0	0	0.0	-	1
ing M	Ogden A	Thru	240	215	241	225	921	71.7	27.5	0.955	889	96.5	12	1.3	13	1.4	7	0.8	0	0.0	-	1
Turn		Left	0	0	0	0	0	0.0	0.0	0.000	0		0		0		0		0			
		U-Turn	0	0	0	0	0	0.0	0.0	0.000	0		0		0		0		0			
		App. Total	501	488	429	390	1808		53.9	0.902	1775	98.2	16	0.9	13	0.7	4	0.2	0	0.0	-	,
		Peds	0	1	0	0	1		-			-			-						1	100.0
	Street	Right	0	0	0	0	0	0.0	0.0	0.000	0		0		0		0		0			
	Cross	Thru	486	464	403	359	1712	94.7	51.0	0.881	1679	98.1	16	0.9	13	0.8	4	0.2	0	0.0		
		Left	15	23	26	31	95	5.3	2.8	0.766	95	100.0	0	0.0	0	0.0	0	0.0	0	0.0		
		U-Tum	0	+	0	0	1	0.1	0.0	0.250	1	100.0	0	0.0	0	0.0	0	0.0	0	0.0		ı
		Start Time	7:15 AM	7:30 AM	7:45 AM	8:00 AM	Total	Approach %	Total %	PHF	Lights	% Lights	Buses	% Buses	Single-Unit Trucks	% Single-Unit Trucks	Articulated Trucks	% Articulated Trucks	Bicycles on Road	% Bicycles on Road	Pedestrians	% Pedestrians

KLOŽ emig. Lindgren, OHara, Aboona, Inc.	nig Lindgren O'Hara Aboona, Inc.
Keni	Keniç

9575 W. Higgins Rd., Suite 400 Rosemont, Illinois, United States 60018 (847)518-9990

Count Name: Ogden Avenue with Cross Street Site Code: Start Date: 11/15/2017 Page No: 4

			Int. Total	902	927	006	976	3705			0.949	3672	99.1	6	0.2	19	0.5	8	0.2	0	0.0		
			App. Total	170	133	149	144	596		16.1	0.876	592	99.3	1	0.2	e	0.5	0	0.0	0	0.0		
			Peds	1	0	0	0	-														1	100.0
	treet	punc	Right	44	24	23	23	114	19.1	3.1	0.648	114	100.0	0	0.0	0	0.0	0	0.0	0	0.0	-	
	Cross S	Southbo	Thru	0	0	0	0	0	0.0	0.0	0.000	0		0		0		0		0			
			Left	126	109	126	121	482	80.9	13.0	0.956	478	99.2	1	0.2	з	0.6	0	0.0	0	0.0		
			U-Tum	0	0	0	0	0	0.0	0.0	0.000	0	-	0		0		0		0		-	
			App. Total	1	1	0	2	4		0.1	0.500	4	100.0	0	0.0	0	0.0	0	0.0	0	0.0	-	
			Peds	0	0	-	1	2		-	1		-	-								2	100.0
(Mc	Drive	pun	Right	0	1	0	1	2	50.0	0.1	0.500	2	100.0	0	0.0	0	0.0	0	0.0	0	0.0	-	
4:30 F	Access [Northbo	Thru	0	0	0	0	0	0.0	0.0	0.000	0	-	0		0		0		0		-	
ata (₄			Left	1	0	0	1	2	50.0	0.1	0.500	2	100.0	0	0.0	0	0.0	0	0.0	0	0.0	-	
our D			U-Tum	0	0	0	0	0	0.0	0.0	0.000	0		0		0		0		0			
eak H			App. Total	427	499	460	474	1860		50.2	0.932	1849	99.4	3	0.2	4	0.2	4	0.2	0	0.0		
ent Po			Peds	0	0	0	0	0		-	1		-	-		,			I	-		0	
ovem	/enue	pun	Right	62	61	56	63	242	13.0	6.5	0.960	242	100.0	0	0.0	0	0.0	0	0.0	0	0.0		
ng Me	Ogden Av	Westbo	Thru	365	438	403	411	1617	86.9	43.6	0.923	1606	99.3	3	0.2	4	0.2	4	0.2	0	0.0		
Turni			Left	0	0	1	0	1	0.1	0.0	0.250	1	100.0	0	0.0	0	0.0	0	0.0	0	0.0		
			U-Turn	0	0	0	0	0	0.0	0.0	0.000	0	-	0		0		0		0		-	
			App. Total	304	294	291	356	1245		33.6	0.874	1227	98.6	2	0.2	12	1.0	4	0.3	0	0.0		
			Peds	1	0	0	0	-		-	1		-	-								1	100.0
	treet	pun	Right	0	0	0	+	+	0.1	0.0	0.250	٢	100.0	0	0.0	0	0.0	0	0.0	0	0.0		
	Cross S	Eastbo	Thru	295	281	279	345	1200	96.4	32.4	0.870	1183	98.6	2	0.2	12	1.0	3	0.3	0	0.0		
			Left	6	13	12	10	44	3.5	1.2	0.846	43	97.7	0	0.0	0	0.0	1	2.3	0	0.0		
			U-Tum	0	0	0	0	0	0.0	0.0	0.000	0		0		0		0		0			
		ŀ	Start Lime	4:30 PM	4:45 PM	5:00 PM	5:15 PM	Total	Approach %	Total %	PHF	Lights	% Lights	Buses	% Buses	Single-Unit Trucks	% Single-Unit Trucks	Articulated Trucks	% Articulated Trucks	Bicycles on Road	% Bicycles on Road	Pedestrians	% Pedestrians

Rosemont, Illinois, United States 60018 (847)518-9990

Count Name: Ogden Avenue with Max Madsen Access Site Code: Start Date: 11/15/2017 Page No: 1

			Int. Total	743	843	838	875	3299	730	762	769	766	3027		858	847	846	891	3442	879	951	881	789	3500	13268	-		13052	98.4	73	0.6	91	0.7	52	0.4	0	0.0	ı	ŀ
			App. Total	0	0	1	0	1	0	0	2	1	3	-	٢	0	3	2	9	2	1	0	0	3	13	-	0.1	13	100.0	0	0.0	0	0.0	0	0.0	0	0.0	,	,
	Drive		Peds	0	0	0	0	0	0	0	0	0	0	-	0	0	1	0	1	0	1	0	0	1	2			-	-		-	-	-	-			ī	2	100.0
	ladsen Access [Southbound	Right	0	0	1	0	1	0	0	0	0	0	•	0	0	2	2	4	2	1	0	0	3	8	61.5	0.1	8	100.0	0	0.0	0	0.0	0	0.0	0	0.0	ı	Ţ
	Max N		Left	0	0	0	0	0	0	0	2	1	3	-	٢	0	1	0	2	0	0	0	0	0	5	38.5	0.0	5	100.0	0	0.0	0	0.0	0	0.0	0	0.0	,	,
			U-Tum	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0		0	-	0	-	0		0	,	ı	,
			App. Total	302	313	305	360	1280	311	343	350	363	1367	-	461	469	431	488	1849	476	471	512	414	1873	6369	-	48.0	6265	98.4	35	0.5	42	0.7	27	0.4	0	0.0	'	'
Data			Peds	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	-		-	-		-	-	-	-	-		ŗ	0	1
'ement [Ogden Avenue	Westbound	Right	0	1	0	2	3	0	З	0	٢	4		0	0	-	0	-	0	0	1	0	1	6	0.1	0.1	6	100.0	0	0.0	0	0.0	0	0.0	0	0.0	,	'
ning Mov)		Thru	302	312	305	358	1277	311	340	350	362	1363		461	469	430	488	1848	476	471	511	414	1872	6360	99.9	47.9	6256	98.4	35	0.6	42	0.7	27	0.4	0	0.0	Ţ	'
Turr			U-Turn	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0	-	0	-	0	-	0		0	'	ı	'
			App. Total	441	530	532	515	2018	419	419	417	402	1657	-	396	378	412	401	1587	401	479	369	375	1624	6886	-	51.9	6774	98.4	38	0.6	49	0.7	25	0.4	0	0.0	ı	'
			Peds	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	-							-		-			0	
	Ogden Avenue	Eastbound	Thru	441	530	532	515	2018	419	417	417	400	1653	-	396	378	411	401	1586	401	478	368	375	1622	6879	<u>99.9</u>	51.8	6767	98.4	38	0.6	49	0.7	25	0.4	0	0.0	ŀ	,
			Left	0	0	0	0	0	0	٢	0	2	3		0	0	1	0	٢	0	1	1	0	2	9	0.1	0.0	6	100.0	0	0.0	0	0.0	0	0.0	0	0.0		
			U-Tum	0	0	0	0	0	0	Ļ	0	0	L L	•	0	0	0	0	0	0	0	0	0	0	Ļ	0.0	0.0	1	100.0	0	0.0	0	0.0	0	0.0	0	0.0	'	'
		Start Time	0	7:00 AM	7:15 AM	7:30 AM	7:45 AM	Hourly Total	8:00 AM	8:15 AM	8:30 AM	8:45 AM	Hourly Total	*** BREAK ***	4:00 PM	4:15 PM	4:30 PM	4:45 PM	Hourly Total	5:00 PM	5:15 PM	5:30 PM	5:45 PM	Hourly Total	Grand Total	Approach %	Total %	Lights	% Lights	Buses	% Buses	Single-Unit Trucks	% Single-Unit Trucks	Articulated Trucks	% Articulated Trucks	Bicycles on Road	% Bicycles on Road	Pedestrians	% Pedestrians

		-
		Ja
		õ
	Ĕ	ğ
	BL0	4
1	poq	ara
	d,	Ĩ
	Ę	0
	ò	eu
	ē	ъб
	Bp	р
	Ę	
	in the	<u>o</u>
	9	<u> </u>

Kenig Lindgren O'Hara Aboona, Inc. 9575 W. Higgins Rd., Suite 400

Rosemont, Illinois, United States 60018 (847)518-9990

Count Name: Ogden Avenue with Max Madsen Access Site Code: Start Date: 11/15/2017 Page No: 2

a
I

	-
	'n
	5
ģ	ğ
a.	d d
5	a
ĝ	a
ď	Ï
Tar.	Ō
ō	C
Ľ,	Ð
B	- B
E I	Ĕ.
1	
Ť	<u>i</u>
9	C.

Kenig Lindgren O'Hara Aboona, Inc. 9575 W. Higgins Rd., Suite 400

Rosemont, Illinois, United States 60018 (847)518-9990

Count Name: Ogden Avenue with Max Madsen Access Site Code: Start Date: 11/15/2017 Page No: 3

			Int. Total	846	891	879	951	3567			0.938	3533	0.66	8	0.2	17	0.5	6	0.3	0	0.0	,	
			App. Total	3	2	2	1	8		0.2	0.667	8	100.0	0	0.0	0	0.0	0	0.0	0	0.0	,	'
	ive		Peds	-	0	0	1	2		-	-		,	-		-	-		-	-		7	100.0
	adsen Access D	Southbound	Right	2	2	2	1	7	87.5	0.2	0.875	7	100.0	0	0.0	0	0.0	0	0.0	0	0.0		ı
	Max M		Left	-	0	0	0	1	12.5	0.0	0.250	+	100.0	0	0.0	0	0.0	0	0.0	0	0.0	,	
			U-Tum	0	0	0	0	0	0.0	0.0	0.000	0	,	0		0	-	0	-	0		,	ı
30 PM)			App. Total	431	488	476	471	1866		52.3	0.956	1854	99.4	3	0.2	5	0.3	4	0.2	0	0.0	,	,
)ata (4:3			Peds	0	0	0	0	0			1		,			-	1		-			0	
ik Hour I	Ogden Avenue	Westbound	Right	+	0	0	0	1	0.1	0.0	0.250	1	100.0	0	0.0	0	0.0	0	0.0	0	0.0	,	
ient Pea			Thru	430	488	476	471	1865	99.9	52.3	0.955	1853	99.4	3	0.2	5	0.3	4	0.2	0	0.0	,	
g Mover			U-Turn	0	0	0	0	0	0.0	0.0	0.000	0	'	0		0		0	-	0		'	ı
Turning	,		App. Total	412	401	401	479	1693	-	47.5	0.884	1671	98.7	5	0.3	12	0.7	5	0.3	0	0.0	-	1
			Peds	0	0	0	0	0		-	T		·			-	T		-			0	ı
	Ogden Avenue	Eastbound	Thru	411	401	401	478	1691	6.66	47.4	0.884	1669	98.7	5	0.3	12	0.7	5	0.3	0	0.0	,	
			Left	+	0	0	1	2	0.1	0.1	0.500	2	100.0	0	0.0	0	0.0	0	0.0	0	0.0	,	
			U-Tum	0	0	0	0	0	0.0	0.0	0.000	0		0		0	-	0	-	0			'
		Ctort Time		4:30 PM	4:45 PM	5:00 PM	5:15 PM	Total	Approach %	Total %	PHF	Lights	% Lights	Buses	% Buses	Single-Unit Trucks	% Single-Unit Trucks	Articulated Trucks	% Articulated Trucks	Bicycles on Road	% Bicycles on Road	Pedestrians	% Pedestrians

	ло Пос
	ooona,
Aboona,	Hara At
, O'Hara,	en O'F
Lindgren	-indgr
Kenig,	anig l

Kenig Lindgren O'Hara Aboona, Inc 9575 W. Higgins Rd., Suite 400

Rosemont, Illinois, United States 60018 (847)518-9990

Count Name: Ogden Avenue with Access Drives Site Code: Start Date: 11/15/2017 Page No: 1

		Int. Total	748	843	860	881	3332	749	765	764	781	3059		860	847	857	907	3471	865	950	875	807	3497	13359			13138	98.3	74	9.0	98	0.7	49	0.4	0	0.0	
		App. Total	0	1	0	0	1	3	2	4	2	11	-	2	3	1	5	11	4	1	1	2	8	31		0.2	29	93.5	0	0.0	2	6.5	0	0.0	0	0.0	
		Peds	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0			-	-			-						0
scess	pun	Right	0	0	0	0	0	0	1	3	2	6		1	2	1	4	8	4	0	0	1	5	19	61.3	0.1	19	100.0	0	0.0	0	0.0	0	0.0	0	0.0	
Gerber Ac	Southbo	Thru	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0	-	0		0		0		0		
		Left	0	1	0	0	1	3	1	1	0	5		1	1	0	-	е	0	1	1	1	3	12	38.7	0.1	10	83.3	0	0.0	2	16.7	0	0.0	0	0.0	
		J-Tum	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0	-	0		0		0		0		
		App. Total	6	10	8	12	36	12	6	7	7	32		2	9	3	8	22	3	4	1	3	11	101		0.8	101	100.0	0	0.0	0	0.0	0	0.0	0	0.0	
		Peds	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0			-	-			-					1	0
Access	pu	Right	6	7	8	8	29	6	5	5	5	24		2	8	3	9	19	2	3	1	3	6	81	80.2	0.6	81	100.0	0	0.0	0	0.0	0	0.0	0	0.0	
way Grove	Northbou	Thru	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0		0		0		0		0		
Fair		Left .	0	3	0	4	7	3	1	2	2	8		0	1	0	2	ю	-	1	0	0	2	20	19.8	0.1	20	0.00	0	0.0	0	0.0	0	0.0	0	0.0	
		-Tum	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0	-	0		0		0		0		
		Pp. Fotal	303	310	318	361	1292	311	343	339	367	1360		458	458	444	492	1852	461	471	501	425	1858	3362		47.6	3258	98.4	36	0.6	44	0.7	24	0.4	0	0.0	
5		eds	0	0	0	0	. 0	0	0	0	0	. 0		0	0	0	0	. 0	0	0	0	0	. 0	0		-	- (-			-						0
nue .	p	kight F	2	0	3	3	8	1	1	3	0	5		2	2	2	0	9	0	0	0	1	1	20	0.3	0.1	20	0.00	0	0.0	0	0.0	0	0.0	0	0.0	
Dgden Ave	Westbour	Thru	301	310	315	358	284	310	337	335	367	349		453	454	438	488	833	458	469	496	420	843	309	99.2	47.2	3205	98.4 1	36	0.6	44	0.7	24	0.4	0	0.0	
U		_eft]	0	0	0	0	0 1	0	5	1	0	6 1		2	2	4	4	12 1	3	2	5	4	14 1	32 6	0.5	0.2	32 6	0.00	0	0.0	0	0.0	0	0.0	0	0.0	
		Turn	0	0	0	0	0	0	0	0	0	0		1	0	0	0	+	0	0	0	0	0	1	0.0	0.0	1	00.0	0	0.0	0	0.0	0	0.0	0	0.0	
		otal	139	522	534	508	003	423	414	414	405	656		398	377	409	402	586	397	474	372	377	620	865		51.4	150	98.3 1	38	0.6	52	0.8	25	0.4	0	0.0	
		eds 7	0	0	0	0	0 2	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0 1	0 6		-	- 6	-			-					I	0
nue .	D	tight F	0	0	1	0	1	,	4	0	1	6		2	2	2	4	10	2	9	2	4	14	31	0.5	0.2	31	0.00	0	0.0	0	0.0	0	0.0	0	0.0	
Jgden Ave	Eastboun	hru	139	521	533	507	000	120	108	112	401	641		395	374	90t	396	571	395	168	370	372	605	817	9.3	51.0	703	98.3 1	38	0.6	51	0.7	25	0.4	0	0.0	
0		-eft T	7 0	1	0	1	2 2	2 4	2 4	2 4	3 4	9 1		1	1	1 4	2	5 1	0	7 0	0	1	1 1	17 6).2 ^c	0.1 5	16 6	4.1 6	0	0.0	1	5.9	0	0.0	0	0.0	
		-Tum l	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0.0	0.0	0	- 6	0	-	0	-	0	-	0		
		,					al					al	***					al					al	al	%						rucks	Init	ucks	ed	Road	uo	s
	Start Time		7:00 AM	7:15 AM	7:30 AM	7:45 AM	Hourly Tot	8:00 AM	8:15 AM	8:30 AM	8:45 AM	Hourly Tot	*** BREAK	4:00 PM	4:15 PM	4:30 PM	4:45 PM	Hourly Tot	5:00 PM	5:15 PM	5:30 PM	5:45 PM	Hourly Tot	Grand Tot	Approach	Total %	Lights	% Lights	Buses	% Buses	Single-Unit Tr	% Single-U Trucks	Articulated Tr	% Articulat Trucks	Bicycles on F	% Bicycles Road	Pedestriar

KLOŻ	ig Lindgren O'Hara Aboona, Inc.
Kenig,	Kenig I

9575 W. Higgins Rd., Suite 400 Rosemont, Illinois, United States 60018 (847)518-9990

Count Name: Ogden Avenue with Access Drives Site Code: Start Date: 11/15/2017 Page No: 3

		Int. Total	843	860	881	749	3333			0.946	3252	97.6	33	1.0	33	1.0	15	0.5	0	0.0		
		App. Total	-	0	0	3	4		0.1	0.333	3	75.0	0	0.0	1	25.0	0	0.0	0	0.0		,
		Peds	0	0	0	0	0			1		-			-				-		0	ī
	ccess	Right	0	0	0	0	0	0.0	0.0	0.000	0		0		0		0		0			1
	Gerber A Southbo	Thru	0	0	0	0	0	0.0	0.0	0.000	0		0		0		0		0			1
		Left	+	0	0	3	4	100.0	0.1	0.333	3	75.0	0	0.0	1	25.0	0	0.0	0	0.0	-	1
		U-Tum	0	0	0	0	0	0.0	0.0	0.000	0	-	0		0		0		0		-	1
		App. Total	10	8	12	12	42		1.3	0.875	42	100.0	0	0.0	0	0.0	0	0.0	0	0.0		,
		Peds	0	0	0	0	0	-	1	I	-	-		-	-				-		0	1
4M)	ve Access ound	Right	7	8	8	6	32	76.2	1.0	0.889	32	100.0	0	0.0	0	0.0	0	0.0	0	0.0		
7:15 /	airway Gro	Thru	0	0	0	0	0	0.0	0.0	0.000	0		0		0		0		0			
)ata (Ë	Left	з	0	4	3	10	23.8	0.3	0.625	10	100.0	0	0.0	0	0.0	0	0.0	0	0.0	-	1
Hour D		U-Tum	0	0	0	0	0	0.0	0.0	0.000	0	-	0		0		0		0		-	1
eak F		App. Total	310	318	361	311	1300		39.0	0.900	1265	97.3	13	1.0	15	1.2	7	0.5	0	0.0		ı
ient P		Peds	0	0	0	0	0	-	1		-	-		-	-				1		0	I
ovem	Avenue ound	Right	0	3	3	1	7	0.5	0.2	0.583	7	100.0	0	0.0	0	0.0	0	0.0	0	0.0	-	I
ing M	Ogden / Westb	Thru	310	315	358	310	1293	99.5	38.8	0.903	1258	97.3	13	1.0	15	1.2	7	0.5	0	0.0	-	I
Turn		Left	0	0	0	0	0	0.0	0.0	0.000	0		0		0		0		0			
		U-Turn	0	0	0	0	0	0.0	0.0	0.000	0		0		0		0		0			
		App. Total	522	534	508	423	1987		59.6	0.930	1942	97.7	20	1.0	17	0.9	8	0.4	0	0.0		ı
		Peds	0	0	0	0	0			I											0	ī
	Avenue	Right	0	1	0	٢	2	0.1	0.1	0.500	2	100.0	0	0.0	0	0.0	0	0.0	0	0.0		ı
	Ogden Eastt	Thru	521	533	507	420	1981	99.7	59.4	0.929	1936	97.7	20	1.0	17	0.9	8	0.4	0	0.0		1
		Left	-	0	1	2	4	0.2	0.1	0.500	4	100.0	0	0.0	0	0.0	0	0.0	0	0.0		1
		U-Tum	0	0	0	0	0	0.0	0.0	0.000	0		0		0		0		0			I
		Start Time	7:15 AM	7:30 AM	7:45 AM	8:00 AM	Total	Approach %	Total %	PHF	Lights	% Lights	Buses	% Buses	Single-Unit Trucks	% Single-Unit Trucks	Articulated Trucks	% Articulated Trucks	Bicycles on Road	% Bicycles on Road	Pedestrians	% Pedestrians

KLOŻA Kerlą, Lindgren, Orłarz, Aboona, Inc.	nig Lindgren O'Hara Aboona, Inc.
Ken	Keniç

9575 W. Higgins Rd., Suite 400 Rosemont, Illinois, United States 60018 (847)518-9990

Count Name: Ogden Avenue with Access Drives Site Code: Start Date: 11/15/2017 Page No: 4

			Int. Total	857	907	865	950	3579			0.942	3546	99.1	7	0.2	17	0.5	6	0.3	0	0.0		
			App. Total	1	5	4	1	11		0.3	0.550	11	100.0	0	0.0	0	0.0	0	0.0	0	0.0		
			Peds	0	0	0	0	0		1			-			-			ı	1	ŀ	0	
	ccess	pund	Right	1	4	4	0	6	81.8	0.3	0.563	6	100.0	0	0.0	0	0.0	0	0.0	0	0.0		
	Gerber A	Southbo	Thru	0	0	0	0	0	0.0	0.0	0.000	0		0		0		0		0			
			Left	0	1	0	1	2	18.2	0.1	0.500	2	100.0	0	0.0	0	0.0	0	0.0	0	0.0	-	
			U-Tum	0	0	0	0	0	0.0	0.0	0.000	0	-	0		0		0		0		-	
			App. Total	3	8	3	4	18		0.5	0.563	18	100.0	0	0.0	0	0.0	0	0.0	0	0.0		,
			Peds	0	0	0	0	0					-			-			I		ı	0	
(M	e Access	pun	Right	3	6	2	3	14	77.8	0.4	0.583	14	100.0	0	0.0	0	0.0	0	0.0	0	0.0		
I:30 F	irway Grov	Northbo	Thru	0	0	0	0	0	0.0	0.0	0.000	0		0		0		0		0		-	
ata (4	Fai		Left	0	2	1	1	4	22.2	0.1	0.500	4	100.0	0	0.0	0	0.0	0	0.0	0	0.0		
our D			J-Tum	0	0	0	0	0	0.0	0.0	0.000	0		0		0		0	I	0		-	
eak H			App. Total	444	492	461	471	1868		52.2	0.949	1856	99.4	3	0.2	4	0.2	5	0.3	0	0.0		,
ent Pe			Peds	0	0	0	0	0			1		-			-			I		ı	0	
veme	enue	pur	Right	2	0	0	0	2	0.1	0.1	0.250	2	100.0	0	0.0	0	0.0	0	0.0	0	0.0		
oM gr	Ogden Av	Westbou	Thru	438	488	458	469	1853	99.2	51.8	0.949	1841	99.4	3	0.2	4	0.2	5	0.3	0	0.0		
Turnii			Left	4	4	3	2	13	0.7	0.4	0.813	13	100.0	0	0.0	0	0.0	0	0.0	0	0.0		
			J-Turn	0	0	0	0	0	0.0	0.0	0.000	0	-	0		0		0		0		-	
			App. Total	409	402	397	474	1682		47.0	0.887	1661	98.8	4	0.2	13	0.8	4	0.2	0	0.0		,
			Peds	0	0	0	0	0		-			-			-			1	1		0	
	enue	pu	Right	2	4	2	6	14	0.8	0.4	0.583	14	100.0	0	0.0	0	0.0	0	0.0	0	0.0	-	
	Ogden Av	Eastbou	Thru	406	396	395	468	1665	0.66	46.5	0.889	1644	98.7	4	0.2	13	0.8	4	0.2	0	0.0	-	
			Left	1	2	0	0	3	0.2	0.1	0.375	3	100.0	0	0.0	0	0.0	0	0.0	0	0.0	-	
			J-Tum	0	0	0	0	0	0.0	0.0	0.000	0		0		0		0		0			
			Start Time	4:30 PM	4:45 PM	5:00 PM	5:15 PM	Total	Approach %	Total %	PHF	Lights	% Lights	Buses	% Buses	Single-Unit Trucks	% Single-Unit Trucks	Articulated Trucks	% Articulated Trucks	Bicycles on Road	% Bicycles on Road	Pedestrians	% Pedestrians

ITE Rates and Equations

Automobile Sales (841)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Floor Area On a: Weekday

Number of Studies: 15 Average 1000 Sq. Feet GFA: 38 Directional Distribution: 50% entering, 50% exiting

Trip Generation per 1000 Sq. Feet Gross Floor Area

Average Rate	Range of Rates	Standard Deviation					
32.30	15.64 - 79.66	15.70					

Data Plot and Equation

 Automobile Sales (841)

 Average Vehicle Trip Ends vs:
 1000 Sq. Feet Gross Floor Area On a:

 Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

 Number of Studies:
 26 Average 1000 Sq. Feet GFA: 30 Directional Distribution:

 75% entering, 25% exiting

Trip Generation per 1000 Sq. Feet Gross Floor Area

ų,

Average Rate	Range of Rates	Standard Deviation			
1.92	0.59 - 6.17	1.72			

2018-7654

Page 63 on

Automobile Sales (841) Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Floor Area On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. Number of Studies: 41 Average 1000 Sq. Feet GFA: Directional Distribution: 40% entering, 60% exiting

Average Rate	Range of Rates	Standard Deviation			
2.62	0.94 - 5.81	1.90			

Data Plot and Equation

ORD 2018-7654

Site Plan

	GENERAL NOTES I. ALL WAR SHUL CONFORM TO THE APPLICABLE COSES AND ORDINANCES OF THE I. ALL WARS SHUL CONFORM TO THE APPLICABLE COSES AND ORDINANCES OF THE ALL WARS SHUL CONFORM TO THE APPLICABLE COSES AND ORDINANCES OF THE START OF THE WARS SHUL CONFORM TO THE SERDE-LITIONS AND QUALTY STANDARDES AND START OF THE WARS SHUL CONFORM TO THE ADJOINT AND ALL PROVEMENT OF THE ADJOINT AND ALL PROVEMENT AND ALL	Link Convertige Convertige <th>2410 W. OGDEN AVE, DOWNERS GROVE Reverse some calculate terms marked, beside drove rotations Reverse some calculate terms marked, beside drove rotations Reverse some calculate terms marked, beside drove rotations Dataway Concerned by the CITY OF DOWNERS GROVE CODE ADDRESS GROVE CALCULATE THE CITY OF DOWNERS GROVE CODE ADDRESS GROVE CALCULATE ADDRESS GROVE CALCULATE ADDRESS CODE ADDRESS GROVE CALCULATE ADDRESS GROVE CALCULATE ADDRESS GROVE CODE ADDRESS ADDRESS GROVE CALCULATE ADDRESS GROVE CALCULATE ADDRESS GROVE CODE ADDRESS ADDRESS ADDRESS GROVE CALCULATE ADDRESS ADDRESS CODE ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS</th>	2410 W. OGDEN AVE, DOWNERS GROVE Reverse some calculate terms marked, beside drove rotations Reverse some calculate terms marked, beside drove rotations Reverse some calculate terms marked, beside drove rotations Dataway Concerned by the CITY OF DOWNERS GROVE CODE ADDRESS GROVE CALCULATE THE CITY OF DOWNERS GROVE CODE ADDRESS GROVE CALCULATE ADDRESS GROVE CALCULATE ADDRESS CODE ADDRESS GROVE CALCULATE ADDRESS GROVE CALCULATE ADDRESS GROVE CODE ADDRESS ADDRESS GROVE CALCULATE ADDRESS GROVE CALCULATE ADDRESS GROVE CODE ADDRESS ADDRESS ADDRESS GROVE CALCULATE ADDRESS ADDRESS CODE ADDRESS ADDRESS ADDRESS ADDRESS
PROPOSED SITE PLAN			

CMAP 2040 Projections Letter

Chicago Metropolitan Agency for Planning

233 South Wacker Drive Suite 800 Chicago, Illinois 60606

312 454 0400 www.cmap.illinois.gov

December 11, 2017

Brendan S. May Consultant Kenig, Lindgren, O'Hara and Aboona, Inc. 9575 West Higgins Road Suite 400 Rosemont, IL 60018

Subject: Ogden Avenue (US 34) @ Cross Street IDOT

Dear Mr. May:

In response to a request made on your behalf and dated December 11, 2017, we have developed year 2040 average daily traffic (ADT) projections for the subject location.

ROAD SEGMENT	Current ADT	Year 2040 ADT
Ogden Ave, @ Cross St	30,600	34,100
Ogden Ave east of Cross St	36,609	40,700
Ogden Ave west of Cross St	34,195	38,100
Cross St north of Ogden Ave	7,442	8,300

Traffic projections are developed using existing ADT data provided in the request letter and the results from the October 2017 CMAP Travel Demand Analysis. The regional travel model uses CMAP 2040 socioeconomic projections and assumes the implementation of the GO TO 2040 Comprehensive Regional Plan for the Northeastern Illinois area.

If you have any questions, please call me at (312) 386-8806.

Sincerely,

42

Jose Rodriguez, PTP, AICP Senior Planner, Research & Analysis

cc: Quigley (IDOT) S\AdminGroups\ResearchAnalysis\TrafficForecasts_CY2017\DownersGrove\du-69-17\du-69-17.docx

Level of Service Criteria

LEVEL OF SERVICE CRITERIA

Signalized Intersections								
Level of			Average Control Delay					
Service	Interpretati	on	(seconds per vehicle)					
A	Favorable progression. Most ve green indication and travel through stopping.	chicles arrive during the h the intersection without	≤10					
В	Good progression, with more ve Level of Service A.	hicles stopping than for	>10 - 20					
С	Individual cycle failures (i.e., one are not able to depart as a result during the cycle) may begin to app stopping is significant, although through the intersection without s	or more queued vehicles t of insufficient capacity bear. Number of vehicles many vehicles still pass topping.	>20 - 35					
D	The volume-to-capacity ratio is hi is ineffective or the cycle length is stop and individual cycle failures	gh and either progression too long. Many vehicles are noticeable.	>35 - 55					
Е	Progression is unfavorable. The is high and the cycle length is failures are frequent.	volume-to-capacity ratio long. Individual cycle	>55 - 80					
F	The volume-to-capacity ratio is very poor, and the cycle length is clear the queue.	very high, progression is long. Most cycles fail to	>80.0					
	Unsignalized	Intersections						
	Level of Service	Average Total Del	ay (SEC/VEH)					
	А	0 -	10					
	В	> 10 -	15					
	С	> 15 -	25					
	D	> 25 -	35					
	Е	> 35 -	50					
	F	> 50)					
Source: Highwa	y Capacity Manual, 2010.							

Capacity Analysis Summary Sheets

ORD 2018-7654

HCS7 Signalized Intersection Input Data

Page 72 of 99

General Information						Intersection Information									
Agency		KLOA, Inc.				Duration, h 0.25				*+ 54	k				
Analyst		BSM		Analysis Date Dec 12,		2, 2017		Area Type		Other		≯		الم 12 حم	
Jurisdiction		IDOT		Time Period		AM Pe	eak Hou	ır	PHF		0.96			₩ 1 E 8	← <mark>~</mark>
Urban Street		Ogden Avenue		Analys	sis Year	2017			Analysis	Period	1> 7:	00	7		÷۲
Intersection		Ogden Avenue with	n Cro…	File Na	ame	Ogder	n Avenu	e with	Cross St	reet - A	MEX.xu	JS		*	
Project Descrip	tion	AM Existing Peak I	Hour											ৰ † ৰুপ	Þ r
		•					1			r					
Demand Inform	nation				EB			W	В		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	<u> </u>	Т	R
Demand (v), v	/eh/h			95	1754	0	0	93	8 363	0	0	1	242	0	18
Signal Informa	otion														
		Poforonoo Dhooo	2	-	2	1.2	- 2VS						~		
Offect c	140.0	Reference Priase	2 Rogin		R	- - - -	1	7				1	Y 2	3	4
Unser, s	No		Degin	Green	4.2	97.3	23.0	0.0	0.0	0.0		_	<u>A</u>		
Eorco Modo	Fixed	Simult Cap N/S	On	Pod	3.5	4.5	4.5	0.0	$\frac{0.0}{0.0}$	0.0			¥ į	7	Y
T OICE Mode	TIXEd	Sindit. Gap 14/5	On	Iteu	0.0	1.5	1.5	0.0	0.0	0.0		0	0		•
Traffic Informa	ation				FB			WF	3		NB			SB	
Approach Move	ement			1	Т	R	1	Т	R	1	Т	R	1	Т	R
Demand (v) ve	h/h			95	1754	0	0	938	363	0	0	1	242	0	18
Initial Queue (C	D _b), veh/	′h		0	0	0	0	0	0	0	0	0	0	0	0
Base Saturation	n Flow F	Rate (s ₀), veh/h		1900	1900	1900	1900	1900	0 1900	1900	1900	1900	1900	1900	1900
Parking (N_m) , m	nan/h				None			Non	e		None			None	
Heavy Vehicles	а. (<i>Рн</i> у), '	%		0	2		0	3	-		0		2	0	
Ped / Bike / RT	OR. /h			0	0		0	0	0	0	0	0	0	0	0
Buses (N_b) , bus	ses/h			0	0	0	0	0	0	0	0	0	0	0	0
Arrival Type (AT)				3	4	3	3	4	3	3	3	3	3	3	3
Upstream Filtering (/)		1.00	1.00	1.00	1.00	1.00) 1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Lane Width (W), ft			12.0	12.0		12.0	12.0)		12.0		12.0	12.0	
Turn Bay Lengt	th, ft			100	0		50	0			0		300	0	
Grade (<i>Pg</i>), %					0			0			0			0	
Speed Limit, m	i/h			40	40	40	35	35	35	15	15	15	30	30	30
Phase Informa	ation			EBL	-	EBT	WBI	-	WBT	NBL	-	NBT	SBL		SBT
Maximum Gree	en (<i>G_{max}</i>) or Phase Split, s		14.0)	111.0			97.0			29.0			29.0
Yellow Change	Interva	I (Y), s		3.5		4.5			4.5			4.5			4.5
Red Clearance Interval (<i>Rc</i>), s		0.0		1.5			1.5			1.5			1.5		
Minimum Green (<i>G</i> _{min}), s		3		15	6		15	6		8	3		8		
Start-Up Lost Time (<i>It</i>), s		2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0		
Extension of Effective Green (e), s		2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0		
Passage (PT), s		3.0		7.0	2.0	\rightarrow	7.0	2.0		4.0	2.0		4.0		
Recall Mode		Off		Min	Off	\rightarrow	Min	Off		Off	Off		Off		
Dual Entry				Yes		Yes	No		Yes	No		Yes	No		Yes
Walk (<i>Walk</i>), s				0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0
Pedestrian Clea	arance	Time (<i>PC</i>), s		0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0
Multimedal.Inf	io rmoti				FD						ND			C D	
85th % Spood	(Rost in	Walk / Corpor Padi		0		25	0	VVB	25	0	ND	25	0	No	25
Walkway / Crosswalk Width / Length ft		9.0	12	23	9.0	12	25	9.0	12	23	9.0	12	23		
Street Width / I	Street Width / Jolond / Curb		9.0 0	0	No	9.0 0	0	No	9.0 0	0	No	9.0 0	0	No	
Midth Outside / Rike Lans / Shoulder ft			12	5.0	2.0	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0	
Pedestrian Sign				1Z No	3.0	2.0	1Z No	5.0	0.50	1Z No	3.0	2.0	1Z No	3.0	0.50
Pedestrian Signal / Occupied Parking		INO		0.50	INO		0.50	INO		0.50	INO		0.50		

Copyright © 2017 University of Florida, All Rights Reserved.

HCS7™ Streets Version 7.1

Generated: 12/12/2017 12:32:34 PM
HCS7 Signalized Intersection Results Summary

Page 73 of 99

O an and hafe muchies						1	1						L.T.
General Information							Intersec		ormatic	on		4 (12 · 12
Agency	KLOA, Inc.						Duration,	h	0.25				×.
Analyst	BSM	Analys	sis Date	Dec 1	2, 2017		Area Typ	е	Other		××		<u>▲</u>
Jurisdiction	IDOT	Time F	Period	AM Pe	eak Hou	ır	PHF		0.96		-4 -≺ -≺	₩ ‡ E 8	+ - -
Urban Street	Ogden Avenue	Analys	sis Year	2017			Analysis	Period	1> 7:0	00	<u>م</u>		7 6
Intersection	Ogden Avenue with Cro	File Na	ame	Ogder	n Avenu	e with	Cross St	reet - A	MEX.xu	IS		*	
Project Description	AM Existing Peak Hour										8	1414Y	ኮሰ
Demand Information			EB			W	3		NB			SB	
Approach Movement		L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v) veh/h		95	1754	0	0	93	8 363	0	0	1	242	0	18
				Ū	Ū	00	000		U	·		Ū	10
Signal Information					215								\mathbf{L}
Cycle, s 140.0	Reference Phase 2		K.	- ₩ *	- 1	2				_	A	1	x1 x
Offset, s 0	Reference Point Begin	Green	42	97.3	23.0		0.0	0.0	_	1	M Z	3	4
Uncoordinated No	Simult. Gap E/W On	Yellow	3.5	4.5	4.5	0.0	0.0	0.0		>	\rightarrow		512
Force Mode Fixed	Simult. Gap N/S On	Red	0.0	1.5	1.5	0.0	0.0	0.0		5	6	7	8
		7	T										
Timer Results		EBL	-	EBT	WB	L	WBT	NB	-	NBT	SBI	-	SBT
Assigned Phase	Assigned Phase			2	<u> </u>	_	6			8			4
Case Number	case Number			4.0			6.3			8.0		_	6.0
Phase Duration, s	1.1		111.0	<u> </u>	\rightarrow	103.3			29.0			29.0	
	3.5		6.0		_	6.0			6.0	<u> </u>		6.0	
Max Allow Headway (Queue Clearance Time (q_s), s					+	0.0	<u> </u>	_	5.1		_	5.1
Queue Clearance Time	4.1		0.0		_	0.0			2.1		_	25.0	
Green Extension Time	0.1		0.0		-	0.0			1.4	<u> </u>		0.0	
Max Out Brobability		1.00)							0.00			1.00
		0.08	,							0.00			1.00
Movement Group Res	sults		EB			WB			NB			SB	
Approach Movement		L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Movement		5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate (v	′), veh/h	99	1827	0	0	706	649		0		252	19	
Adjusted Saturation Flo	ow Rate (<i>s</i>), veh/h/ln	1810	1870	0	259	1856	6 1679		0		1416	1610	
Queue Service Time (g s), s	2.1	0.0	0.0	0.0	8.0	20.1		0.0		22.9	1.4	
Cycle Queue Clearanc	e Time (<i>g c</i>), s	2.1	0.0	0.0	0.0	8.0	20.1		0.0		23.0	1.4	
Green Ratio (g/C)		0.74	0.75		0.69	0.69	0.69				0.16	0.16	
Capacity (c), veh/h	·· () ()	331	2806	0.000	51	1289	9 1167		0.000		283	265	
Volume-to-Capacity Ra	AIIO(X)	0.299	0.651	0.000	0.000	0.548	3 0.556		0.000		0.890	0.071	
Back of Queue (Q), It	hin (95 in percentile)	34	21.2	0	0	103.	0 0		0		420	25.0	
Dack of Queue (Q), V	(95 in percentile)	1.4	0.0	0.0	0.0	4.0	9.9		0.0		10.0	0.00	
Queue Storage Ratio (KQ) (95 in percentile)	0.34	0.00	0.00	0.00	0.00	0.00		0.00		1.42	0.00	
Uniform Delay (01), s		7.3	1.2	0.0	0.0	1.9	0.0		0.0		59.5 27.9	49.5	
Incremental Delay (d		0.5	1.2	0.0	0.0	1.7	1.9		0.0		27.0	0.2	
Control Delay (d) s/v	7.8	1.2	0.0	0.0	3.5	8.5		0.0		87.3	10.0		
Level of Service (LOS)	Δ	Δ		0.0	Δ	Δ				67.5	+9.0 D		
Approach Delay, s/yeh	15		Δ	59		Δ	48 0	2	D	84 7		F	
Intersection Delay, s/ven	Approach Delay, s/ven / LOS			9	.5			10.0		5	А А		
	tersection Delay, s/ven / LOS												
Multimodal Results	lultimodal Results		EB			WB			NB			SB	
Pedestrian LOS Score	/ LOS	2.0		В	2.2		В	2.9		С	2.9		С
Bicycle LOS Score / LO	DS	2.1		В	1.6		В	0.5		A	0.9		A

Copyright © 2017 University of Florida, All Rights Reserved.

HCS7 Signalized Intersection Intermediate Values

la contra c																	
General Inform	nation	Y								Inter	sectio	ו Inf	ormat	ion		14741	the La
Agency		KLOA, Inc.								Durat	ion, h		0.25	5		* *	R
Analyst		BSM		Analy	sis Dat	e C	Dec 12,	2017		Area	Туре		Othe	ər	≯≯		≜ _5
Jurisdiction		IDOT		Time	Period	Α	M Peal	< Hou	r	PHF			0.96	j		W 🗍 E 8	
Urban Street		Ogden Avenue		Analy	sis Yea	r 2	017			Analy	vsis Pe	riod	1> 7	2:00	4		* •
Intersection		Ogden Avenue with (Cro	File N	lame	C)gden A	venue	e wit	h Cros	s Stree	et - A	MEX.	kus		\$	
Project Descrip	tion	AM Existing Peak Ho	ur													ነላ ተቀጥ	14
Domond Inform			_						10				NIT	ר ר		00	
Demand Inform	nation		_		EB	-	Р		- V	vв т	D	-		3		<u>ЗВ</u>	
Approach Move			_		175/	+	R 0			1 20 0	к 262			K	L 242		Γ. 10
Demand (V), V	en/n			95	1754	+	0	0	9.	30 3	003	0	0	1	242	U	10
Signal Informa	tion						<u>,</u>										1
Cycle, s	140.0	Reference Phase	2		B	-	4 2	രംഗം തകര						_	A		Φ
Offset, s	0	Reference Point	Begin	<u></u>		_	27.0			0 (0.0	_	1	Y ²	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yello	14.2 v35		97.3 1.5	23.0 4.5	0.	0 0) ()	0.0	-11	~	\rightarrow		кŤа
Force Mode	Fixed	ed Simult. Gap N/S On			0.0	÷	1.5	1.5	0.	0 ().0	0.0		5	6	7	8
																1	
Saturation Flo	w / Dela	ay	L	-	Г F	२	L	Т		R	L		Т	R	L	Т	R
Lane Width Adj	ustmen	t Factor (<i>f</i> w)	1.00	0 1.0	000 1.0	00	1.000	1.00	00	1.000	1.00	0 1	.000	1.000	1.000	1.000	1.000
Heavy Vehicles	and Gr	ade Factor (<i>f</i> _{HVg})	1.00	0 0.9	84 1.0	00	1.000	0.97	77	1.000	1.00	0 1	.000	1.000	0.984	1.000	0.914
Parking Activity	arking Activity Adjustment Factor (f_p) 1			0 1.0	000 1.0	00	1.000	1.00	00	1.000	1.00	0 1	.000	1.000	1.000	1.000	1.000
Bus Blockage A	Bus Blockage Adjustment Factor (fbb)			0 1.0	00 1.0	00	1.000	1.00	00	1.000	1.00	0 1	.000	1.000	1.000	1.000	1.000
Area Type Adjustment Factor (fa) 1			1.00	0 1.0	00 1.0	00	1.000	1.00	00	1.000	1.00	0 1	.000	1.000	1.000	1.000	1.000
Lane Utilization Adjustment Factor (f_{LU}) 1.			1.00	0 1.0	000 1.0	00	1.000	1.00	00	1.000	1.00	0 1	.000	1.000	1.000	1.000	1.000
Left-Turn Adjustment Factor (<i>f</i> _L τ) 0.			0.95	2 0.0	00		0.136	0.00	00		1.00	0 0).847		0.745	0.000	
Right-Turn Adju	ıstment	Factor (<i>f</i> _{RT})		1.0	000 1.0	00		0.90)5	0.905		C	0.000	0.847		0.847	0.847
Left-Turn Pedes	strian A	djustment Factor (fLpb)	1.00	0			1.000				1.00	0			1.000		
Right-Turn Ped	-Bike Ao	djustment Factor (f _{Rpb})			1.0	00				1.000				1.000			1.000
Work Zone Adju	ustment	Factor (fwz)	1.00	0 1.0	00 1.0	00	1.000	1.00	00	1.000	1.00	0 1	.000	1.000	1.000	1.000	1.000
Movement Satu	uration F	low Rate (s), veh/h	181	0 37	41 ()	259	255	6	979	0		0	1610	1416	0	1610
Proportion of Ve	ehicles /	Arriving on Green (P)	0.0	3 1.	00 0.	00	0.00	0.9	3	0.69	0.00		0.00	0.16	0.16	0.00	0.16
Incremental De	lay Fac	tor (<i>k</i>)	0.1	0.	50			0.5	0	0.50					0.42	0.15	
0		1.0			EDT				14/						0.01		
		ment Groups		BL 7	EB1/	ĸ	VVE	SL		BI/R	N	BL		IBI/R	SBL		SBI/R
Lost Time (tL)			3	.5	0.0	-			6	0.0			+	6.0			0.0
Green Ralio (g/	C)	low Data (a) wah/h/m	0.	74	0.75)			0	0.09				0.10	<u> </u>		0.10
Shored Seturat		v Rate (S_p) , veh/h/lp	4	00	0		<u> </u>	-		259	<u> </u>		+	0			1410
Permitted Effect	tive Gro	$\frac{1}{2} = \frac{1}{2} $	0	3	0.0				ſ	10			-	0.0			23.0
Permitted Servi		(α_{μ}) s	7	7 1	0.0				c r).0) ()			-	0.0			22.0
Permitted Que	ie Servi	ce Time (a_{ns}) s	7	1	0.0				() ()			-	0.0			22.9
Time to First Bl	ockade	(<i>a</i> f), s	0	.0	0.0				(0.0				23.0			0.0
Queue Service	Time B	efore Blockage (<i>a</i> ts), s			0.0			-						20.0			0.0
Protected Right	t Satura	tion Flow $(s_{\rm R})$ veh/h/l						-									
Protected Right	Protected Right Effective Green Time (g_R) , s					-							-				
Multimodal			-	F	B	_		W	R				NB			SB	
Pedestrian Fw/	Pedestrian Fw / Fv			389	0.00)	1.55	57	- 0	.00	2.	07		0.00	2 10	7	0.00
Pedestrian F _s /	Pedestrian F_{s}/F_{delay} (000	0.05	9	0.00	00	0	075	0.0	000	().156	0.00)	0.156
Pedestrian Moor	Pedestrian <i>M</i> corner / <i>M</i> cw				0.00		0.00				0.0		-		0.00		
Bicycle <i>c_b</i> / <i>d_b</i>	icvcle c_b / d_b 15			0.00	4.38	;	1389	.66	6	.52	328	3.57	4	8.89	328.5	7	48.89
Bicycle Fw / Fv			-3	.64	1.59)	-3.6	4	1	.12	-3	.64		0.00	-3.64	+	0.45
,	ycle Fw / Fv						0.0			-					5.5		-

Copyright © 2017 University of Florida, All Rights Reserved.

Generated: 12/12/2017 12:32:34 PM

--- Messages ----

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ----

Copyright © 2017 University of Florida, All Rights Reserved.

HCS7[™] Streets Version 7.1

Generated: 12/12/2017 12:32:34 PM

HCS7 Signalized Intersection Input Data

Page 76 of 99

				-					-						
General Inform	nation							1	Intersec	tion Inf	ormatio	on		4241	þa l <u>a</u>
Agency		KLOA, Inc.							Duration	, h	0.25			4 5	
Analyst		BSM		Analys	is Date	Dec 1	2, 2017		Area Typ	e	Other		4		
Jurisdiction		IDOT		Time F	Period	PM P	eak Hou	ır	PHF		0.95			W A E	↓ 2
Urban Street		Ogden Avenue		Analys	is Year	2017			Analysis	Period	1> 7:(00			
Intersection		Ogden Avenue with	Cro	File Na	ame	Ogde	n Avenu	e with	Cross St	reet - P	MEX.xu	IS		**	
Project Descrip	tion	PM Existing Peak H	Hour	л										114Y	۴r
							14			14					
Demand Inform	nation				EB			W	В		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			44	1211	1	1	163	30 249	2	0	2	482	0	114
				i					1	_					_
Signal Informa	tion				2	,	9205						_		\mathbf{A}
Cycle, s	140.0	Reference Phase	2		R	8	- SA	2				1		3	4
Offset, s	0	Reference Point	Begin	Green	3.2	89.3	32.0	0.0	0.0	0.0			Ā		
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.5	4.5	4.5	0.0	0.0	0.0					- V
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	1.5	1.5	0.0	0.0	0.0	-	5	6	7	8
Traffic last	41 a													00	
Irattic Informa	tion				EB	D		VVB			NB	D		SB	
Approach wove	ement				1011	R		1	R			R	L 100		R
Demand (V), Ve	n/n	·		44	1211	1	1	1630) 249	2	0	2	482	0	114
	hitial Queue (Qb), veh/h Base Saturation Flow Rate (sa), veh/h			0	0	0	0	1000	0	0	0	0	0	0	0
Base Saturation	Parking (N_m) , man/h			1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Parking (IVm), m	Heavy Vehicles (<i>PHV</i>), %				None		0	None	9		None		4	None	
Ped / Bike / RTOR /h				2	1	0	0		0	0	0	0	1	0	0
Ped / Bike / RTOR, /h				0	0	0	0	0	0	0	0	0	0	0	0
Buses (<i>N</i> _b), buses/h				0	0	0	0	0	0	0	0	0	0	0	0
Arrival Type (A	/) · ()			3	4	3	3	4	3	3	3	3	3	3	3
Upstream Filter	ring (/)			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
), IL 1			12.0	12.0		12.0	12.0	·		12.0		12.0	12.0	
Turn Bay Lengt	.n, n			100	0		0	0	_		0		300	0	
Grade (Pg), %	i/b			40	40	40	25	25	25	15	15	15	20	20	20
Speed Limit, m	l/n			40	40	40	35	35	35	15	15	15	30	30	30
Phase Informa	tion			EBL		EBT	WB	L	WBT	NBL	_	NBT	SBL		SBT
Maximum Gree	n (<i>G</i> max) or Phase Split. s		11.0	-	02.0			91.0			38.0			38.0
Yellow Change	Interval	(Υ). s		3.5		4.5		-	4.5			4.5			4.5
Red Clearance	Interval	(<i>R</i> c). s		0.0		1.5			1.5			1.5			1.5
Minimum Greer	ר (<i>Gmin</i>)	, S		3		15	6		15	6		8	3		8
Start-Up Lost T	ime (<i>lt</i>)	, S		2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Extension of Ef	fective (Green (e), s		2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Passage (PT),	s			3.0		7.0	2.0		7.0	2.0		4.0	2.0		4.0
Recall Mode				Off		Min	Off		Min	Off		Off	Off		Off
Dual Entry				Yes		Yes	No		Yes	No		Yes	No		Yes
Walk (<i>Walk</i>), s	Walk (<i>Walk</i>), s			0.0		0.0	0.0	-	0.0	0.0		0.0	0.0		0.0
Pedestrian Clearance Time (<i>PC</i>), s				0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0
Multimodal Inf	Multimodal Information				EB			WB			NB			SB	
85th % Speed /	85th % Speed / Rest in Walk / Corner Radius			0	No	25	0	No	25	0	No	25	0	No	25
Walkway / Cros	Walkway / Crosswalk Width / Length, ft			9.0	12	0	9.0	12	0	9.0	12	0	9.0	12	0
Street Width / Is	Street Width / Island / Curb			0	0	No	0	0	No	0	0	No	0	0	No
Width Outside /	Bike La	ane / Shoulder, ft		12	5.0	2.0	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0
Pedestrian Sigr	edestrian Signal / Occupied Parking					0.50	No		0.50	No		0.50	No		0.50

Copyright © 2017 University of Florida, All Rights Reserved.

HCS7™ Streets Version 7.1

Generated: 12/12/2017 12:40:27 PM

HCS7 Signalized Intersection Results Summary

Page 77 of 99

General Inform	nation	1							Intersect	tion Inf	ormatio	on			
Agency		KLOA, Inc.							Duration,	h	0.25				R_
Analyst		BSM		Analys	sis Date	e Dec 1	2, 2017		Area Typ	е	Other		≯≯		<u>^</u>
Jurisdiction		IDOT		Time F	Period	PM Pe	eak Hou	ır	PHF		0.95			W 🗍 E 8	+ +
Urban Street		Ogden Avenue		Analys	sis Year	2017			Analysis	Period	1> 7:(00			1 1
Intersection		Ogden Avenue with	Cro	File Na	ame	Ogder	n Avenu	e with	Cross St	reet - P	MEX.xu	ıs		*	
Project Descrip	tion	PM Existing Peak I	lour											4 1 4 M	7
					ED		1		<u>,</u>				1	0.0	
Demand Inform	mation				EB		<u>.</u>		3	<u>.</u>	NB		<u> </u>	SB	
Approach Move	ement				1	R		1	R	L	1	R	L		R
Demand (v), v	/eh/h			44	1211	1	1	163	0 249	2	0	2	482	0	114
Signal Informa	ation			i											1
Cycle s	140.0	Reference Phase	2		L2		- 24S						2	-	Φ
Offset s	0	Reference Point	Begin		Þ.			2				1	Y 2	3	4
Uncoordinated	No	Simult Gap F/W	On	Green	3.2	89.3	32.0	0.0	0.0	0.0	_		ð-		-+-
Force Mode	Fixed	Simult Gap N/S	On	Red	0.0	4.5	4.5	0.0	0.0	0.0		5	6	7	Y
	Тіхоч	olinial. Oup 14/0	on	Ttou	0.0	1.0	1.0	0.0	0.0	0.0					
Timer Results				EBI		EBT	WB	L	WBT	NB		NBT	SBI		SBT
Assigned Phase	Assigned Phase			5		2			6			8			4
Case Number	Case Number			1.0		4.0			6.3			8.0			6.0
Phase Duration	Phase Duration, s			6.7	-	102.0			95.3			38.0			38.0
Change Period, (Y+R c), s				3.5		6.0			6.0			6.0			6.0
Max Allow Headway (<i>MAH</i>), s				4.0		0.0			0.0			5.1			5.1
Queue Clearan	Queue Clearance Time (g s), s											10.7			34.0
Green Extensio	Green Extension Time (g e), s					0.0			0.0			3.8			0.0
Phase Call Pro	Phase Call Probability)	0.0		+	0.0			1.00			1.00
Max Out Proba	Phase Call Probability Max Out Probability			0.69)							0.03			1.00
				0.00											
Movement Gro	oup Res	sults			EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ement			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow I	Rate(<i>v</i>), veh/h		46	638	638	1	989	989		4		507	120	
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/	In	1781	1885	1885	441	1885	1799		1153		1426	1610	
Queue Service	Time (g	g s), S		1.2	7.4	7.4	0.1	36.6	50.3		0.0		23.3	8.7	
Cycle Queue C	learanc	e Time (<i>g c</i>), s		1.2	7.4	7.4	0.8	36.6	50.3		8.7		32.0	8.7	
Green Ratio (g	ŋ∕C)			0.67	0.69	0.69	0.64	0.64	0.64		0.23		0.23	0.23	
Capacity (c), v	/eh/h			154	1293	1292	330	1202	1147		302		289	368	
Volume-to-Cap	acity Ra	itio(X)		0.301	0.494	0.494	0.003	0.823	0.862		0.014		1.757	0.326	
Back of Queue	(Q), ft/	In (95 th percentile)	32.1	99.1	98.7	0.6	314.8	556.3		5.4		1553.1	161.4	
Back of Queue	(Q), ve	eh/In (95 th percent	ile)	1.3	3.9	3.9	0.0	12.5	22.3		0.2		61.6	6.5	
Queue Storage	Ratio (RQ) (95 th percen	tile)	0.32	0.00	0.00	0.00	0.00	0.00		0.00		5.18	0.00	
Uniform Delay	(d 1), s	/veh		20.0	2.2	2.2	9.5	6.5	10.4		41.9		60.4	45.0	
Incremental De	lay (<i>d</i> 2), s/veh		1.1	1.3	1.3	0.0	6.4	8.6		0.0		354.5	0.7	
Initial Queue De	elay(d	з), s/veh		0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Control Delay (Control Delay (<i>d</i>), s/veh				3.6	3.6	9.5	13.0	19.0		41.9		415.0	45.7	
Level of Service	_evel of Service (LOS)			С	Α	A	А	В	В		D		F	D	
Approach Dela	Approach Delay, s/veh / LOS			4.2		А	16.0)	В	41.9)	D	344.	3	F
Intersection De	ntersection Delay, s/veh / LOS					64	1.4						E		
	3 ,														
Multimodal Re	lultimodal Results				EB			WB			NB			SB	
Pedestrian LOS	S Score	/ LOS		2.1		В	2.2		В	2.9		С	2.9		С
Bicycle LOS Sc	cycle LOS Score / LOS			1.6		В	2.1		В	0.5		A	1.5		В

Copyright © 2017 University of Florida, All Rights Reserved.

HCS7[™] Streets Version 7.1

HCS7 Signalized Intersection Intermediate Values

Page 78 of 99

General Information	1						Inte	rsectio	n Infoi	rmat	ion		┙╡╎┿╵	the lat
Agency	KLOA, Inc.						Dura	ation, h		0.25	i			بر
Analyst	BSM	/	Analysis	Date	Dec 12,	2017	Area	а Туре		Othe	ər	×		<u>▲</u> <u>↓</u>
Jurisdiction	IDOT	1	īme Pe	riod	PM Pea	k Hour	PHF	:		0.95	; 	 	W 🗍 E 8	∳ ↓ ↓
Urban Street	Ogden Avenue	/	Analysis	Year	2017		Ana	lysis Pe	riod	1> 7	:00	<u>ر</u> لا		7 7
Intersection	Ogden Avenue with C	ro F	ile Nan	ne	Ogden A	venue	with Cro	ss Stree	et - PM	IEX.>	kus		*	
Project Description	PM Existing Peak Hou	ır											ካ ተ ተ ቀጥ	۲
Demonstal Information		_		E D						NIT	`		00	
Demand Information		\rightarrow		EB			T VB	D			3	<u> </u>	<u>58</u>	
Approach Movement		\rightarrow		1	R		1	R	L	1	R	L	1	R
Demand (V), ven/n			44	1211	- 1	1	1630	249	2	0	2	482	0	114
Signal Information					R	JE								
Cvcle. s 140.0	Reference Phase	2	F	-3	고 문	E43 5 4 7								$\mathbf{\Phi}$
Offset, s 0	Reference Point B	eain		Ň		<u> </u>					1	2	3	4
Uncoordinated No	Simult, Gap E/W	On N	Freen	3.2	89.3	32.0	0.0	0.0	0.0	-		\rightarrow		r†a
Force Mode Fixed	Fixed Simult. Gap N/S On).0	4.5 1.5	4.5 1.5	0.0	0.0	0.0	-	5	6	7	
Saturation Flow / Dela	ay	L	Т	R	L	Т	R	L	-	Т	R	L	Т	R
Lane Width Adjustment	t Factor (<i>f</i> _w)	1.000	1.000	1.000	1.000	1.000	1.000	1.00	0 1.0	000	1.000	1.000	1.000	1.000
Heavy Vehicles and Gr	ade Factor (fHVg)	0.984	0.992	1.000	1.000	0.992	1.000	1.00	0 1.0	000	1.000	0.992	1.000	1.000
Parking Activity Adjustr	ment Factor (f_p)	1.000	1.000	1.000	1.000	1.000	1.000	1.00	0 1.0	000	1.000	1.000	1.000	1.000
Bus Blockage Adjustment Factor (<i>fbb</i>)			1.000	1.000	1.000	1.000	1.000	1.00	0 1.0	000	1.000	1.000	1.000	1.000
Area Type Adjustment Factor (<i>f</i> a)			1.000	1.000	1.000	1.000	1.000	1.00	0 1.0	000	1.000	1.000	1.000	1.000
Lane Utilization Adjustment Factor (f_{LU})			1.000	1.000	1.000	1.000	1.000	1.00	0 1.0	000	1.000	1.000	1.000	1.000
Left-Turn Adjustment F	Left-Turn Adjustment Factor (f_{LT}) (0.232	0.000	-	0.65	2 0.6	607		0.751	0.897	
Right-Turn Adjustment Factor (f_{RT})			1.000	1.000)	0.954	0.954		0.0	000	0.607		0.847	0.847
Left-Turn Pedestrian A	djustment Factor (<i>fLpb</i>)	1.000			1.000			1.00	0			1.000		
Right-Turn Ped-Bike Ad	djustment Factor (<i>f</i> _{Rpb})			1.000)		1.000				1.000			1.000
Work Zone Adjustment	Factor (fwz)	1.000	1.000	1.000	1.000	1.000	1.000	1.00	0 1.0	000	1.000	1.000	1.000	1.000
Movement Saturation F	Flow Rate (s), veh/h	1781	3767	3	441	3208	477	576	(0	576	1426	0	1610
Proportion of Vehicles	Arriving on Green (P)	0.02	0.91	0.69	0.64	0.85	0.64	0.23	6 0.	00	0.23	0.23	0.00	0.23
Incremental Delay Fact	tor (<i>k</i>)	0.11	0.50	0.50	0.50	0.50	0.50		0.	15		0.50	0.15	
Signal Timing / Mover	ment Groups	EB	LI	EBT/R	WE	BL	WBT/R	N	BL	N	IBT/R	SBL	_	SBT/R
Lost Time (<i>t</i> _L)		3.5	5	6.0			6.0				6.0			6.0
Green Ratio (g/C)		0.6	7	0.69			0.64				0.23			0.23
Permitted Saturation F	low Rate (<i>s</i> _p), veh/h/ln	22	0	0			441			Ĺ	1292			1426
Shared Saturation Flov	v Rate (<i>ssh</i>), veh/h/ln										0			
Permitted Effective Gre	een Time (g_p), s	91.	3	0.0			89.3				32.0			32.0
Permitted Service Time	e (g _u), s	39.	0	0.0			88.6				23.3			23.3
Permitted Queue Servi	ce Time (<i>g_{ps}</i>), s	13.	9				0.1				0.0			23.3
Time to First Blockage	(<i>g</i> _f), s	0.0		0.0			0.0				2.0			0.0
Queue Service Time B	efore Blockage (<i>g</i> _{fs}), s										0.1			
Protected Right Satura	Protected Right Saturation Flow (<i>s</i> _R), veh/h/ln											_		
Protected Right Effective														
Multimodal	Multimodal					WB			Ν	١B			SB	
Pedestrian Fw / Fv	Pedestrian F_w / F_v 1			0.00	1.55	57	0.00	2.1	07		0.00	2.10	7	0.00
Pedestrian Fs / Fdelay		0.00	00	0.078	0.00	00	0.089	0.0	000	C).150	0.00	0	0.150
Pedestrian Mcorner / Mcw	edestrian Mcorner / Mcw													
Bicycle cb / db		1371	.43	6.91	1275	.16	9.19	457	7.15	4	1.66	457.1	5	41.66
Bicycle Fw / Fv		-3.6	64	1.09	-3.6	64	1.63	-3	.64		0.01	-3.64	4	1.04

Copyright © 2017 University of Florida, All Rights Reserved.

Generated: 12/12/2017 12:40:27 PM

--- Messages ---

WARNING: If demand exceeds capacity, a multiple-period analysis should be conducted.

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ----

 $Copyright @ {\tt 2017} \ University \ of \ Florida, \ All \ Rights \ Reserved.$

HCS7[™] Streets Version 7.1

Generated: 12/12/2017 12:40:27 PM

HCS7 Two-Way Stop-Control Report

General Information		Site Information										
Analyst	BSM	Intersection	Ogden with Max Madsen									
Agency/Co.	KLOA, Inc.	Jurisdiction	IDOT									
Date Performed	12/12/2017	East/West Street	Ogden Avenue									
Analysis Year	2017	North/South Street	Max Madsen Access									
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.94									
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25									
Project Description	17-273 - Downers Grove											
Lanos												

Lanes

Major Street: East-West

Vehicle Volumes and Adjustments																
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	0	0
Configuration		L	Т				Т	TR							LR	
Volume, V (veh/h)		0	1996				1300	3						0		1
Percent Heavy Vehicles (%)		0												0		0
Proportion Time Blocked																
Percent Grade (%)															0	
Right Turn Channelized		Ν	lo			Ν	10			Ν	10			Ν	lo	
Median Type/Storage				Left	Only								1			
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.5		6.9
Critical Headway (sec)		4.10												6.80		6.90
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30
Delay, Queue Length, and	d Leve	el of S	ervice	3												
Flow Rate, v (veh/h)		0													1	
Capacity, c (veh/h)		501													391	
v/c Ratio		0.00													0.00	
95% Queue Length, Q ₉₅ (veh)		0.0													0.0	
Control Delay (s/veh)		12.2													14.2	
Level of Service, LOS		В													В	
Approach Delay (s/veh)		0.0												14	4.2	
Approach LOS															В	

HCS7 Two-Way Stop-Control Report

General Information		Site Information	
Analyst	BSM	Intersection	Ogden with Max Madsen
Agency/Co.	KLOA, Inc.	Jurisdiction	IDOT
Date Performed	12/12/2017	East/West Street	Ogden Avenue
Analysis Year	2017	North/South Street	Max Madsen Access
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.94
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	17-273 - Downers Grove		
Lanos			

Lanes

.

. .

Major Street: East-West

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	0	0
Configuration		L	Т				Т	TR							LR	
Volume, V (veh/h)		2	1691				1865	1						1		7
Percent Heavy Vehicles (%)		0												0		0
Proportion Time Blocked																
Percent Grade (%)															0	
Right Turn Channelized		No				Ν	lo			Ν	10			Ν	10	
Median Type/Storage				Left	Only								1			
Critical and Follow-up Headways																
Base Critical Headway (sec)		4.1												7.5		6.9
Critical Headway (sec)		4.10												6.80		6.90
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30
Delay, Queue Length, and	d Leve	el of S	ervice	2												
Flow Rate, v (veh/h)		2													8	
Capacity, c (veh/h)		295													190	
v/c Ratio		0.01													0.04	
95% Queue Length, Q ₉₅ (veh)		0.0													0.1	
Control Delay (s/veh)		17.3													24.7	
Level of Service, LOS		C													С	
Approach Delay (s/veh)	0.0										-	-		24	4.7	
Approach LOS														(С	

HCS7 Two-Way Stop-Control Report

General Information		Site Information	
Analyst	BSM	Intersection	Ogden with Gerber/Fairway
Agency/Co.	KLOA, Inc.	Jurisdiction	IDOT
Date Performed	12/12/2017	East/West Street	Ogden Avenue
Analysis Year	2017	North/South Street	Gerber/Fairway Access
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	17-273 - Downers Grove		

Lanes

Major Street.

Vehicle Volumes and Adj	ustme	ents														
Approach		Eastk	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0
Configuration		L	Т	TR		L	Т	TR			LTR				LTR	
Volume, V (veh/h)		4	1990	2		0	1293	7		10	0	32		4	0	0
Percent Heavy Vehicles (%)		0				0				0	0	0		0	0	0
Proportion Time Blocked																
Percent Grade (%)											0				0	
Right Turn Channelized		No				١	10			Ν	lo			Ν	10	
Median Type/Storage				Left	Only								1			
Critical and Follow-up Headways																
Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																
Delay, Queue Length, an	d Leve	el of S	ervice	9												
Flow Rate, v (veh/h)		4				0					45				4	
Capacity, c (veh/h)		509				267					114				88	
v/c Ratio		0.01				0.00					0.39				0.05	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					1.6				0.1	
Control Delay (s/veh)		12.1				18.5					55.7				47.7	
Level of Service, LOS		В				С					F				E	
Approach Delay (s/veh)		0.0				C	0.0			5	5.7			4	7.7	
Approach LOS									F E					E		

Copyright © 2017 University of Florida. All Rights Reserved.

HCS7 1 TWSC Version 7.1

HCS7 Two-Way Stop-Control Report

General Information		Site Information	
Analyst	BSM	Intersection	Ogden with Gerber/Fairway
Agency/Co.	KLOA, Inc.	Jurisdiction	IDOT
Date Performed	12/12/2017	East/West Street	Ogden Avenue
Analysis Year	2017	North/South Street	Gerber/Fairway Access
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.94
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	17-273 - Downers Grove		
Lanas			

Lanes

Vehicle Volumes and Adj	ustme	ents														
Approach		Eastk	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0
Configuration		L	Т	TR		L	Т	TR			LTR				LTR	
Volume, V (veh/h)		3	1675	14		13	1853	2		4	0	14		2	0	9
Percent Heavy Vehicles (%)		0				0				0	0	0		0	0	0
Proportion Time Blocked																
Percent Grade (%)											0				0	
Right Turn Channelized		Ν	10			١	10			Ν	lo			Ν	10	
Median Type/Storage				Left	Only								1			
Critical and Follow-up H	eadwa	ays														
Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																
Delay, Queue Length, an	d Leve	el of S	ervice	9												
Flow Rate, v (veh/h)		3				14					19				12	
Capacity, c (veh/h)		298				348					159				145	
v/c Ratio		0.01				0.04					0.12				0.08	
95% Queue Length, Q ₉₅ (veh)		0.0				0.1					0.4				0.3	
Control Delay (s/veh)		17.2				15.8					30.7				32.0	
Level of Service, LOS		С				С					D				D	
Approach Delay (s/veh)		C	0.0			C).1			30).7			37	2.0	
Approach LOS										5				D		

Copyright © 2017 University of Florida. All Rights Reserved.

HCS7 TM TWSC Version 7.1

Ogden with Gerber and Fairway Grove Access - PMEX.xtw

HCS7 Signalized Intersection Input Data

Page 84 of 99

General Inform	nation								Intersec	tion Inf	ormatio	n		I ad ada ada d	þa l <u>u</u>
	ation	KI OA Inc							Duration	h	0 25	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		44	
Apolyct		REOA, IIIC.		Analys	vic Data	Doc 1	2 2017			0	Othor				₹
Juriediction				Time				ır		C			* ⊸	w‡e	- <u>5</u> - 4-
Lirban Street		Odden Avenue				2023			Analysis	Pariod	1> 7.0	20			
Intersection		Ogden Avenue with			ame	Order		ے with	Cross St		MPR vi			•	<u> </u>
Project Descrip	tion	AM Projected Peak	Hour			Oguei	Avenu	e with	01033 0	ieei - A		15	_	₩ 14149	ÞČ
T Toject Descrip		AMTTOJECIEGTEA	Tiour												
Demand Inform	nation				EB			W	В		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	/eh/h			97	1803	0	0	96	4 372	0	0	1	249	0	18
				1			- 11 -		ji						
Signal Informa	ation	1	1		2	, .	<u> </u>						_		
Cycle, s	140.0	Reference Phase	2		R	₿ *	- SA	2				1	€ 2	3	4
Offset, s	0	Reference Point	Begin	Green	4.3	97.2	23.0	0.0	0.0	0.0			<u>Ř</u>		
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.5	4.5	4.5	0.0	0.0	0.0		~			₩.
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	1.5	1.5	0.0	0.0	0.0	- 11	5	6	7	8
Troffic Informa	tion				ED			\A/D			ND			CD	
Approach Move	anont				ED T	P	1		P	1		P	1	т	P
	h/h			Q7	1803			964	372		0	1	2/0	0	18
Initial Queue (C), veh/	/h		0	0	0	0	0	0	0	0	0	0	0	0
Base Saturation	Base Saturation Flow Rate (s_0) , veh/h			1900	1900	1900	1900	1900) 1900	1900	1900	1900	1900	1900	1900
Parking (<i>N_m</i>), man/h				1000	None	1000	1000	Non	-	1000	None	1000	1000	None	1000
Heavy Vehicles (<i>PHv</i>), %				0	2		0	3	5		0		2	0	
Ped / Bike / RTOR. /h				0	0		0	0	0	0	0	0	0	0	0
Buses (<i>N</i> _b), buses/h				0	0	0	0	0	0	0	0	0	0	0	0
Arrival Type (<i>AT</i>)			3	4	3	3	4	3	3	3	3	3	3	3	
Upstream Filter	ring (/)			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (W), ft			12.0	12.0		12.0	12.0)		12.0		12.0	12.0	
Turn Bay Lengt	h, ft			100	0		0	0			0		300	0	
Grade (<i>Pg</i>), %					0	1		0			0			0	
Speed Limit, mi	i/h			40	40	40	35	35	35	15	15	15	30	30	30
Phase Informa	ition			EBL	· -	EBT	WB	-	WBT	NBL	-	NBT	SBL	-	SBT
Maximum Gree	en (<i>G_{max}</i>) or Phase Split, s		14.0) .	111.0		_	97.0			29.0			29.0
Yellow Change	Interval	l (Y), s		3.5		4.5			4.5	<u> </u>		4.5			4.5
Red Clearance	Interval	l (<i>Rc</i>), s		0.0	_	1.5		_	1.5		_	1.5			1.5
Minimum Green	n (<i>Gmin</i>)	, S		3		15	6	_	15	6	_	8	3		8
Start-Up Lost 1	ime (<i>It</i>)	, s One en (e) e		2.0	_	2.0	2.0	+	2.0	2.0	_	2.0	2.0	_	2.0
Extension of Ef		Green (e), s		2.0		2.0	2.0	-	2.0	2.0		2.0	2.0	_	2.0
Passage (PT),	s			3.0		7.U	2.0	-	7.0	2.0		4.0	2.0		4.0
				Vaa	_	Vee	UII No		IVIII1	- Uii	_	Vaa	- Oli		Vaa
					-	nes		-	n o			n o			res
Podestrian Clar	aronce -			0.0	_	0.0	0.0		0.0	0.0		0.0	0.0		0.0
Pedesthan Clea	arance	nine (PC), s		0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0
Multimodal Inf	ormatio	on			EB			WB			NB			SB	
85th % Speed /	Rest in	Walk / Corner Radi	ius	0	No	25	0	No	25	0	No	25	0	No	25
Walkway / Cros	swalk V	Vidth / Length, ft		9.0	12	0	9.0	12	0	9.0	12	0	9.0	12	0
Street Width / Is	sland / (Curb		0	0	No	0	0	No	0	0	No	0	0	No
Width Outside /	Bike La	ane / Shoulder, ft		12	5.0	2.0	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0
Pedestrian Sigr	nal / Oco	cupied Parking		No		0.50	No		0.50	No		0.50	No		0.50

Copyright © 2017 University of Florida, All Rights Reserved.

HCS7™ Streets Version 7.1

Generated: 12/12/2017 12:37:09 PM

HCS7 Signalized Intersection Results Summary

Page 85 of 99

Agency KLOA, Inc. Duration, h 0.25 Applying RSM Applying Data Data 12, 2017 Apply Type Other			
Agency KLOA, Inc. Duration, n U.25		4 5	
Analyst IRSM Analysis Data Das 12, 2017 Area Type Other			R.
Analysis Date Dec 12, 2017 Area type Other	**		
Jurisdiction IDOT Time Period AM Peak Hour PHF 0.96		w + E 8	↓ ↓ ↓
Urban Street Ogden Avenue Analysis Year 2023 Analysis Period 1> 7:00			7
Intersection Ogden Avenue with Cro File Name Ogden Avenue with Cross Street - AMPR.xus		\$	
Project Description AM Projected Peak Hour	<u>1</u> 4	ነ ተዋጥ ኮ ሶ	1
Demand Information EB WB NB		SB	
Approach Movement L T R L T R L T R	L	Т	R
Demand (v), veh/h 97 1803 0 0 964 372 0 0 1	249	0	18
Signal Information			
Offrast on the Deference Printse 2	2	3	4
Offset, s O Reference Point Begin Green 4.3 97.2 23.0 0.0 0.0 0.0	<u>~</u>		
Uncoordinated No Simult. Gap E/W On Yellow 3.5 4.5 4.5 0.0 0.0 0.0		_	Y
	ь	7	8
Timer Results EBL EBT WBL WBT NBL NBT	SBL	SE	ЗТ
Assigned Phase 5 2 6 8		4	ι
Case Number 1.0 4.0 6.3 8.0		6.	.0
Phase Duration, s 7.8 111.0 103.2 29.0		29	.0
Change Period, (Y+R c), s 3.5 6.0 6.0 6.0		6.	.0
Max Allow Headway (MAH), s 4.0 0.0 0.0 5.1		5.	.1
Queue Clearance Time (g s), s 4.2 2.1		25	j.0
Green Extension Time (g e), s 0.1 0.0 1.4		0.	.0
Phase Call Probability 1.00 1.00		1.0	00
Max Out Probability 0.10 0.00		1.0	00
Movement Group Results EB WB NB		SB	
Approach Movement L T R L T R L T R	L	Т	R
Assigned Movement 5 2 12 1 6 16 3 8 18	7	4	14
Adjusted Flow Rate (v), veh/h 101 1878 0 0 724 667 0	259	19	
Adjusted Saturation Flow Rate (s), veh/h/ln 1810 1870 0 246 1856 1680 0	1416	1610	
Queue Service Time (g s), s 2.2 0.0 0.0 8.4 21.2 0.0	22.9	1.4	
Cycle Queue Clearance Time (g c), s 2.2 0.0 0.0 8.4 21.2 0.0	23.0	1.4	
Green Ratio (g/C) 0.74 0.75 0.69 0.69	0.16	0.16	
Capacity (c), veh/h 321 2806 51 1289 1167	283	265	
Volume-to-Capacity Ratio (X) 0.315 0.669 0.000 0.562 0.572 0.000	0.915 (0.071	
Back of Queue (Q), ft/ln (95 th percentile) 34.8 22.9 0 0 107.7 257.8 0 4	446.3	25.8	
Back of Queue (Q), veh/ln (95 th percentile) 1.4 0.9 0.0 4.2 10.3 0.0	17.6	1.0	
Queue Storage Ratio (RQ) (95 th percentile) 0.35 0.00 0.00 0.00 0.00 0.00	1.49	0.00	
Uniform Delay (d 1), s/veh 7.6 0.0 0.0 1.9 6.7	59.8	49.5	
Incremental Delay (d 2), s/veh 0.6 1.3 0.0 0.0 1.8 2.0 0.0	32.7	0.2	
Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0	0.0	
Control Delay (d), s/veh 8.2 1.3 0.0 3.7 8.7	92.4	49.6	
Level of Service (LOS) A A A A	F	D	
Approach Delay, s/veh / LOS 1.6 A 6.1 A 48.9 D	89.5	F	-
Intersection Delay, s/veh / LOS 10.0 B	3		
Multimodal Results EB WB NB		SB	
Pedestrian LOS Score / LOS 2.0 B 2.2 B 2.9 C	2.9	C	;

Copyright © 2017 University of Florida, All Rights Reserved.

HCS7 Signalized Intersection Intermediate Values

Page 86 of 99

General Information	on						Inte	ersectio	n Infor	mati	ion			
Agency	KLOA, Inc.						Dur	ation, h		0.25			-+ <i>Y</i>	R
Analyst	BSM		Analysi	s Date	Dec 12,	2017	Are	а Туре		Othe	er	≯≯		یم
Jurisdiction	IDOT		Time Pe	eriod	AM Pea	k Hour	PHF	F		0.96			W ‡ E S	← ↓ ✓
Urban Street	Ogden Avenue		Analysi	s Year	2023		Ana	alysis Pe	riod	1> 7	:00	<u>را</u> بر		* •
Intersection	Ogden Avenue with C	ro	File Na	ne	Ogden A	venue	with Cro	oss Stree	et - AM	PR.×	us		*	
Project Description	AM Projected Peak H	our											ካ ተ ተ ቀጥ	†* (*
							=							
Demand Informati	ion	\rightarrow		EB	_		WB	_		NE	3		SB	
Approach Moveme	nt	_	L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/r	n		97	1803	0	0	964	372	0	0	1	249	0	18
Signal Information	n				R									
Cycle s 14	0.0 Reference Phase	2		_2	🛃 🔚	242						Z		Φ
Offset s	Reference Point	Zenin		-S	- -						1	2	3	4
	lo Simult Gan E/W	On	Green	4.3	97.2	23.0	0.0	0.0	0.0	-	-	Ă_		
Eorce Mode Fix	red Simult Gap N/S	On	Yellow	3.5	4.5	4.5	0.0	0.0	0.0	-	^ 5	¥ 6	7	Y
			Reu	0.0	1.5	1.5	0.0	0.0	0.0		5	0		
Saturation Flow /	Delay	1	Т	R	1	Т	R		-	-	R	1	т	R
Lane Width Adjustn	ment Factor (fw)	1 00	0 1 000) 1 00	1 000	1 000	1 000	0 1 00	0 1 0	00	1 000	1 000	1 000	1 000
Heavy Vehicles and	d Grade Eactor (feva)	1.00	0 0 984	1 1 00	1 000	0.977	1.000	0 1.00	0 1.0	00	1,000	0.984	1.000	0.914
Parking Activity Adi	ustment Eactor (f_0)	1.00		1 1.00	1.000	1 000	1.000	0 1.00	0 1.0	00	1.000	1 000	1.000	1 000
Bus Blockage Adius	stment Factor (f_{bb})	1.00		1.00	1.000	1.000	1.000	0 1.00	0 1.0		1.000	1.000	1.000	1,000
Area Type Adjustm	ent Eactor (f_2)	1.00		1.00	1.000	1.000	1.000	0 1.00	0 1.0		1.000	1.000	1.000	1.000
Lane Utilization Adi	iustment Factor (fui)	1.00		1.00	1.000	1.000	1.000	0 1.00	0 1.0		1.000	1.000	1.000	1,000
Left-Turn Adjustme	nt Factor (f_{LT})	0.95	2 0 000))	0 130	0.000	1.000	1.00		47	1.000	0.745	0.000	1.000
Right-Turn Adjustm	the factor (f_{PT})	0.35	1 000) 1.00	1 0.100	0.000		5			0.847	0.740	0.847	0.847
Left-Turn Pedestria	$\int Adjustment Factor (f_{int})$	1.00	n	1.00	1 000	0.303	0.300	1 00	0.0	00	0.047	1 000	0.047	0.047
Pight Turn Pod Bik	a Adjustment Factor (<i>f</i> eet)	1.00	5	1.00	1.000		1.000	1.00	0		1 000	1.000		1 000
Work Zone Adjustr	pent Eactor (fue)	1 00	0 1 000	1.00	1 000	1 000	1.000	0 1.00	0 1 0	00	1.000	1 000	1 000	1.000
Movement Saturati	on Flow Rate (s) veh/h	1810	3741	0	246	2560	075	0 1.00	0 1.0))	1610	1/16	0	1610
Proportion of Vehic	les Arriving on Green (P)	0.03			0.00	0.93	0.69			, 10	0.16	0.16	0.00	0.16
Incremental Delay	Eactor (k)	0.00	0.50	0.00	0.00	0.50	0.03	0.00	, 0.0	50	0.10	0.10	0.00	0.10
Incremental Delay		0.11	0.00			0.50	0.50	· ·				0.44	0.15	
Signal Timing / Mo	ovement Groups	E	BL	EBT/R	WE	3L	WBT/R	N	BL	N	BT/R	SBL	_ (SBT/R
Lost Time (t_{\perp})	•	3.	.5	6.0			6.0				6.0			6.0
Green Ratio (g/C)		0.	74	0.75			0.69			(0.16			0.16
Permitted Saturatio	on Flow Rate (<i>s</i> ₂), veh/h/ln	39	94	0			246			1	416			1416
Shared Saturation	Flow Rate (<i>s</i> sh), veh/h/ln										0			
Permitted Effective	Green Time (q_p) , s	99	0.2	0.0			0.0				0.0			23.0
Permitted Service 1	Time (q_u) , s	76	6.0	0.0			0.0				0.0			22.9
Permitted Queue S	Service Time (g_{ps}) , s	8	.0				0.0							22.9
Time to First Blocka	age (<i>a</i> f), s	0.	.0	0.0			0.0			2	23.0			0.0
Queue Service Tim	e Before Blockage (<i>q</i> ts), s													
Protected Right Sat	turation Flow (s _R), veh/h/lr													
Protected Right Eff	ective Green Time (aR). s													
Multimodal		-	FB			WB			N	B			SB	
Pedestrian Fw / Fv		1 3	89	0.00	1.5	57	0.00	2	107	- (0.00	2 10	7	0.00
Pedestrian F. / Fdel	av		000	0.059	0.0	20	0.075	0	000	0	156	0.00	0 0) 156
Pedestrian Mcorner	Mcw	0.0		5.000	0.0		5.515	0.		0	. 100	0.00		
Bicycle ch / dh		150	0.00	4 38	1388	94	6 53	32	3 57	Δ	8 89	328 5	7	18 89
Bicycle Fw / Fv		-3	64	1.63	-36		1.15	_3	64	- (0.00	-3.64	1	0.46
		-0.	~	1.00	-0.0	· ·	1.10	-5				-0.0-	•	0.10

Copyright © 2017 University of Florida, All Rights Reserved.

Generated: 12/12/2017 12:37:09 PM

--- Messages ----

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ----

Copyright © 2017 University of Florida, All Rights Reserved.

HCS7[™] Streets Version 7.1

Generated: 12/12/2017 12:37:09 PM

HCS7 Signalized Intersection Input Data

Page 88 of 99

General Inform	nation								Intersec	tion Inf	ormatio	n		4241.	b L
	lation								Duration	b	0 25	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		44	
Apolyct		REOA, IIIC.		Analys	vic Doto	Dec 1	2 2017			0	Othor		- <u>-</u>		۲. 4
Analysi				Time				ır	леа тур	e				w↑e	- <u>-</u>
Junsaiction		Orden Avenue				2022		11		Doriod	1 7.0	20			
		Ogden Avenue	Cro	Filo N		Ordo		o with	Cross St	root D					<u> </u>
Project Description	tion	Dyuen Avenue with DM Projected Deak	Hour			Oguei	Avenu		101055 31	ieel - F		15	_	₩ च † क फ	
T Toject Descrip	uon	I WIT TOJECTED T EAK	Tiour												
Demand Inform	nation				EB			W	В		NB			SB	
Approach Move	ement			L	Т	R	L	Г	- R	L	Т	R	L	Т	R
Demand (v), v	eh/h			45	1245	1	1	16	77 249	2	0	2	494	0	116
Oise al lu famma	4!			1											
Signal Informa		Deference Dhees	2				202						~		ሐ
Cycle, s	140.0	Reference Phase	2 Decin		R.	≓ "	- SA	2				1	\$ 2	3	4
Unset, s	U	Reference Point	Begin	Green	3.3	89.2	32.0	0.0	0.0	0.0		_	<u> </u>		•
Uncoordinated	INO Fixed	Simult. Gap E/W	On	Yellow	3.5	4.5	4.5	0.0	0.0	0.0				_	Ψ.
Force Mode	Fixed	Simult. Gap N/S	On	Rea	0.0	1.5	1.5	0.0	0.0	0.0		5	6	1	8
Traffic Informa	tion				FB			WF	3		NB			SB	
Approach Move	ement			L	T	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), ve	h/h			45	1245	1	1	167	7 249	2	0	2	494	0	116
Initial Queue (C	2 _b). veh/	ĥ		0	0	0	0	0	0	0	0	0	0	0	0
Base Saturation	n Flow F	Rate (<i>s</i> ₀), veh/h		1900	1900	1900	1900	190	0 1900	1900	1900	1900	1900	1900	1900
Parking (<i>N</i> _m), man/h				None			Non	e		None			None		
Heavy Vehicles (<i>P</i> _{HV}), %			2	1		0	1			0		1	0		
Ped / Bike / RTOR, /h			0	0	0	0	0	0	0	0	0	0	0	0	
Buses (<i>N</i> _b), buses/h			0	0	0	0	0	0	0	0	0	0	0	0	
Arrival Type (AT)			3	4	3	3	4	3	3	3	3	3	3	3	
Upstream Filter	Upstream Filtering (/)			1.00	1.00	1.00	1.00	1.00	0 1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (W)), ft			12.0	12.0		12.0	12.0)		12.0		12.0	12.0	
Turn Bay Lengt	Turn Bay Length, ft		100	0		0	0			0		300	0		
Grade (<i>Pg</i>), %					0			0			0			0	
Speed Limit, mi	i/h			40	40	40	35	35	35	15	15	15	30	30	30
Phase Informa	tion			EBL		EBT	WB		WBT	NBL		NBT	SBL		SBT
Maximum Gree	n (<i>G</i> max) or Phase Split, s		11.0) 1	02.0			91.0			38.0			38.0
Yellow Change	Interval	(Y), s		3.5		4.5			4.5			4.5			4.5
Red Clearance	Interval	(<i>Rc</i>), s		0.0		1.5			1.5			1.5			1.5
Minimum Greer	า (<i>Gmin</i>)	, S		3		15	6		15	6		8	3		8
Start-Up Lost T	ime (<i>lt</i>)	, S		2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Extension of Eff	fective (Green (<i>e</i>), s		2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Passage (PT), s	s			3.0		7.0	2.0		7.0	2.0		4.0	2.0		4.0
Recall Mode				Off		Min	Off		Min	Off		Off	Off		Off
Dual Entry				Yes		Yes	No		Yes	No		Yes	No		Yes
Walk (<i>Walk</i>), s				0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0
Pedestrian Clea	arance	Time (PC), s		0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0
Multimodal Inf	ormatio	on			FB			WB			NB			SB	
85th % Speed /	Rest in	Walk / Corner Radi	us	0	No	25	0	No	25	0	No	25	0	No	25
Walkway / Cros	swalk V	Vidth / Length. ft	-	9.0	12	0	9.0	12	0	9.0	12	0	9.0	12	0
Street Width / Is	sland / (Curb		0	0	No	0	0	No	0	0	No	0	0	No
Width Outside /	Bike La	ane / Shoulder, ft		12	5.0	2.0	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0
Pedestrian Sigr	nal / Oco	cupied Parking		No		0.50	No		0.50	No		0.50	No		0.50

Copyright © 2017 University of Florida, All Rights Reserved.

HCS7™ Streets Version 7.1

Generated: 12/12/2017 12:39:58 PM

HCS7 Signalized Intersection Results Summary

Page 89 of 99

	C.														V 1
General Inform	nation							\rightarrow	Intersec		ormatic	on	- 1	μĻ	
Agency		KLOA, Inc.				D (0.0047		Duration,	n	0.25				R_
Analyst		BSM		Analys	sis Date	Dec 1	2, 2017	\rightarrow	Area Typ	e	Other		*×		<u>↓</u>
Jurisdiction				lime H	Period	PM P	eak Hou	Ir		<u> </u>	0.95			W + E 8	+
Urban Street		Ogden Avenue		Analys	sis Year	2023			Analysis	Period	1> 7:0	00			
Intersection		Ogden Avenue with	1 Cro	File Na	ame	Ogde	n Avenu	e with	Cross St	reet - P	MPR.xu	JS	- [\$	
Project Descrip	tion	PM Projected Peak	Hour											N I N T	
Demand Inform	mation				FB			W	R		NB			SB	
Approach Move	ement				T	R		Т	R		Т	R		T	R
Demand (v) , v	/eh/h			45	1245	1	1	167	77 249	2	0	2	494	0	116
								1.1			-			-	
Signal Informa	ation						215								
Cycle, s	140.0	Reference Phase	2		K.		- •	2				. –	4	۱	ф
Offset, s	0	Reference Point	Begin	Green	33	89.2	32.0		0.0	0.0	_	1	Y ²	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow	3.5	4.5	4.5	0.0	0.0	0.0		~	\rightarrow		512
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	1.5	1.5	0.0	0.0	0.0		5	6	7	8
				7											
Timer Results				EBI	-	EBT	WB	L	WBT	NB		NBT	SBL	-	SBT
Assigned Phase	е			5		2			6			8			4
Case Number				1.0		4.0			6.3			8.0			6.0
Phase Duration	n, s			6.8		102.0			95.2			38.0			38.0
Change Period	, (Y+R a	c), S		3.5		6.0			6.0			6.0			6.0
Max Allow Head	dway (A	ИАН), s		4.0		0.0	<u> </u>		0.0			5.1			5.1
Queue Clearan	ice Time	e (g s), s		3.2								10.9			34.0
Green Extensio	Green Extension Time (<i>g</i> e), s Phase Call Probability			0.0		0.0		_	0.0			3.9			0.0
Phase Call Probability				1.00)			\rightarrow				1.00			1.00
Max Out Probability				0.72	2							0.04			1.00
Movement Group Results					EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ement			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow I	Rate (<i>v</i>), veh/h		47	656	656	1	1014	1014		4		520	122	
Adjusted Satura	ation Flo	ow Rate (<i>s</i>), veh/h/	In	1781	1885	1885	426	1885	5 1801		1144		1426	1610	
Queue Service	Time (g	g s), s		1.2	7.8	7.8	0.1	39.9	54.2		0.0		23.1	8.9	
Cycle Queue C	learance	e Time (<i>g c</i>), s		1.2	7.8	7.8	1.2	39.9	54.2		8.9		32.0	8.9	
Green Ratio (g	ŋ∕C)			0.67	0.69	0.69	0.64	0.64	0.64		0.23		0.23	0.23	
Capacity (c), v	/eh/h			145	1293	1292	320	1202	2 1148		300		287	368	
Volume-to-Cap	acity Ra	itio(X)		0.326	0.507	0.507	0.003	0.844	4 0.883		0.014		1.811	0.332	
Back of Queue	(Q), ft/	In (95 th percentile)	36.7	102.8	102.3	0.6	334	596.8		5.4		1624.6	164.6	
Back of Queue	(Q), ve	eh/In (95 th percent	ile)	1.4	4.1	4.1	0.0	13.3	23.9		0.2		64.5	6.6	
Queue Storage	Ratio (RQ) (95 th percen	tile)	0.37	0.00	0.00	0.00	0.00	0.00		0.00		5.42	0.00	
Uniform Delay	(d 1), si	/veh		22.2	2.2	2.2	9.6	6.8	10.8		41.9		60.5	45.1	
Incremental De	lay (<i>d</i> 2), s/veh		1.3	1.4	1.4	0.0	7.3	9.9		0.0		378.6	0.7	
Initial Queue De	elay(d	з), s/veh		0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	
Control Delay (d), s/ve	eh		23.5	3.6	3.7	9.6	14.1	20.7		42.0		439.1	45.8	
Level of Service	e (LOS)			С	A	Α	A	В	С		D		F	D	
Approach Delay	y, s/veh	/LOS		4.3		A	17.4	1	В	42.0)	D	364.	3	F
Intersection De	lay, s/ve	eh / LOS			_	68	3.3						E		
Multimediate	a													00	
Redestriars L OC	Sults	// 02		0.4	EB	P	0.0	VVB	B		NB	0	0.0	SB	0
Riovela LOS				2.1		D	2.2		P	2.9		^	2.9		B
	ore / LC	13		1.6		В	2.2		В	0.5		А	1.5		В

Copyright © 2017 University of Florida, All Rights Reserved.

HCS7 Signalized Intersection Intermediate Values

General Inform	nation	Y								Inters	sectior	Info	rmat	ion			t ta l'
Agency		KLOA, Inc.								Durat	ion, h		0.25	5		·+ `	<u>.</u>
Analyst		BSM		Anal	ysis	Date	Dec 12,	2017		Area	Туре		Othe	ər	≯≯		<u>▲</u> -{
Jurisdiction		IDOT		Time	Per	iod I	PM Pea	k Hou	Ir	PHF			0.95	5		₩ ‡ E 8	← <u>∻</u> ~
Urban Street		Ogden Avenue		Anal	ysis `	Year	2023			Analy	sis Per	iod	1> 7	2:00	4		\$7 6
Intersection		Ogden Avenue with	Cro	File	Nam	e	Ogden A	venu	e wit	th Cros	s Stree	t - PN	/PR.:	xus	_ ¬	\$	
Project Descrip	tion	PM Projected Peak	lour													ካ ተ ተ ቀ ነ	7 * 7
Demond Inform									1				NIC	ר ר		00	
Approach Move	mont			1					V								
Approach Move	ah/h		_		1	245	1	1	16	1 277 (к 240	2			L 404		116
Demand (V), V	en/n			45		245	1	1			49	2	0	2	494	0	110
Signal Informa	tion						<u>,</u>									_	
Cycle, s	140.0	Reference Phase	2		E	a →	4 🔄	<u>Б</u> Ф	7					_	A		$\mathbf{\Phi}$
Offset, s	0	Reference Point	Begin	0.000		2	>		<u>́</u>	0		0.0	_	1	Y ²	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yello	w 3	.3 5	09.2 4.5	32.0 4.5	0.	0 0) ()	0.0	- 11	~	\rightarrow		кŤа
Force Mode	Fixed	Simult. Gap N/S	On	Red	0	.0	1.5	1.5	0.	.0 ().0	0.0		5	6	7	8
Saturation Flo	w / Dela	ау	L		Т	R	L	Т	•	R	L		Т	R	L	Т	R
Lane Width Adj	ustmen	t Factor (<i>f</i> w)	1.00	0 1.	000	1.000	1.000	1.0	00	1.000	1.000) 1.	000	1.000	1.000	1.000	1.000
Heavy Vehicles	and Gr	ade Factor (fHVg)	0.98	4 0.	992	1.000	1.000	0.9	92	1.000	1.000) 1.	000	1.000	0.992	1.000	1.000
Parking Activity	Adjustr	nent Factor (<i>f</i> _p)	1.00	0 1.	000	1.000	1.000	1.0	00	1.000	1.000) 1.	000	1.000	1.000	1.000	1.000
Bus Blockage A	djustme	ent Factor (<i>f</i> _{bb})	1.00	0 1.	000	1.000	1.000	1.0	00	1.000	1.000) 1.	000	1.000	1.000	1.000	1.000
Area Type Adju	stment	Factor (<i>f</i> a)	1.00	0 1.	000	1.000	1.000	1.0	00	1.000	1.000) 1.	000	1.000	1.000	1.000	1.000
Lane Utilization	Adjustr	ment Factor (<i>f</i> LU)	1.00	0 1.	000	1.000	1.000	1.0	00	1.000	1.000) 1.	000	1.000	1.000	1.000	1.000
Left-Turn Adjus	tment F	actor (<i>f</i> ⊥⊤)	0.95	2 0.	000		0.224	0.0	00		0.647	' 0.	602		0.751	0.000	
Right-Turn Adju	stment	Factor (f _{RT})		1.	000	1.000		0.9	56	0.956		0.	000	0.602		0.847	0.847
Left-Turn Pedes	strian A	djustment Factor (fLpb	1.00	0			1.000				1.000				1.000		
Right-Turn Ped	-Bike Ad	djustment Factor (f _{Rpb})			1.000				1.000				1.000			1.000
Work Zone Adju	ustment	Factor (fwz)	1.00	0 1.	000	1.000	1.000	1.0	00	1.000	1.000) 1.	000	1.000	1.000	1.000	1.000
Movement Satu	iration F	low Rate (<i>s</i>), veh/h	178	1 3	767	3	426	322	21	466	572		0	572	1426	0	1610
Proportion of Ve	ehicles /	Arriving on Green (<i>P</i>)	0.0	2 0	.91	0.69	0.64	0.8	35	0.64	0.23	0	.00	0.23	0.23	0.00	0.23
Incremental De	lay Fac	tor (<i>k</i>)	0.1	1 0	.50	0.50	0.50	0.5	50	0.50		0	.15		0.50	0.15	
Signal Timing		mont Groups		DI		DT/D	۸/۲	21	۱۸/	DT/D	NI	21	N		SDI		SPT/D
Jost Time (t)		nent Groups				6 0	VVE				IN			60	SDL		60
Croop Patio (a)				67			-		0	0.0				0.0		\rightarrow	0.0
Bermitted Satur	c) ration El	low Rate (s.) veh/h/l		10	-	0.09	-		0	126				1280			1/26
Shared Saturat	ion Flov	v Rate (set), veh/h/ln		10	-	0	-			+20			-	0			1420
Permitted Effec	tive Gre	en Time (a_0) s	9	12	-	0.0			8	9 2				32.0			32.0
Permitted Servi	ce Time	(q_{μ}) s	3	5.0		0.0			8	8.2				23 1			23.1
Permitted Que	ie Servi	ce Time (a_{ps}) , s	1	5.0 6.4	-	0.0			(0.1			<u> </u>	0.0			23.1
Time to First Bl	ockade	(<i>a</i> f), s		0.0		0.0			(0.0			+	2.0		+	0.0
Queue Service	Time B	efore Blockade (<i>a</i> _{fs})		-								_		0.1			
Protected Right	Satura	tion Flow (s_R) , veh/h/l	n		\vdash								+	011			
Protected Right	Effectiv	ve Green Time (ar) s										-					
Multimodal			-		EB			V	/B				NB			SB	
Pedestrian Fw/	Fv		1	389	(0.00	1.5	57	- 0	0.00	2.1	07		0.00	2.10	7	0.00
Pedestrian Fs /	F _{delav}		0	000	0	.078	0.0	00	0	.089	0.0	00	().150	0.00	0	0.150
Pedestrian Mcor	mer / Mcw	/					5	-									
Bicycle cb / db			137	1.43	6	5.91	1274	.74	9	9.20	457	.15	4	1.66	457.1	5	41.66
Bicycle Fw / Fv			-3	.64		1.12	-3.6	64	1	.67	-3.	64		0.01	-3.64	1	1.06
							1						1			1	

Copyright © 2017 University of Florida, All Rights Reserved.

Generated: 12/12/2017 12:39:58 PM

--- Messages ---

WARNING: If demand exceeds capacity, a multiple-period analysis should be conducted.

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ----

 $Copyright @ {\tt 2017} \ University \ of \ Florida, \ All \ Rights \ Reserved.$

HCS7[™] Streets Version 7.1

Generated: 12/12/2017 12:39:58 PM

HCS7 Two-Way Stop-Control Report

General Information		:	Site Information	
Analyst	BSM		Intersection	Ogden with Max Madsen
Agency/Co.	KLOA, Inc.		Jurisdiction	IDOT
Date Performed	12/12/2017		East/West Street	Ogden Avenue
Analysis Year	2023		North/South Street	Max Madsen Access
Time Analyzed	AM Peak Hour		Peak Hour Factor	0.94
Intersection Orientation	East-West		Analysis Time Period (hrs)	0.25
Project Description	17-273 - Downers Grove			
Lanas				

Lanes

.

- -

Major Street: East-West

venicle volumes and Adj	ustme	ents														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	0	0
Configuration		L	Т				Т	TR							LR	
Volume, V (veh/h)		0	2052				1335	3						0		1
Percent Heavy Vehicles (%)		0												0		0
Proportion Time Blocked																
Percent Grade (%)															0	
Right Turn Channelized		Ν	lo			Ν	lo			Ν	lo			Ν	lo	
Median Type/Storage				Left	Only								1			
Critical and Follow-up He	eadwa	iys														
Base Critical Headway (sec)		4.1												7.5		6.9
Critical Headway (sec)		4.10												6.80		6.90
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30
Delay, Queue Length, and	d Leve	el of S	ervice	•												
Flow Rate, v (veh/h)		0													1	
Capacity, c (veh/h)		485													380	
v/c Ratio		0.00													0.00	
95% Queue Length, Q ₉₅ (veh)		0.0													0.0	
Control Delay (s/veh)		12.4													14.5	
Level of Service, LOS		В													В	
Approach Delay (s/veh)		0	.0				-				-	-		14	4.5	
Approach LOS															В	

HCS7 Two-Way Stop-Control Report

General Information		Site Information	
Analyst	BSM	 Intersection	Ogden with Max Madsen
Agency/Co.	KLOA, Inc.	Jurisdiction	IDOT
Date Performed	12/12/2017	East/West Street	Ogden Avenue
Analysis Year	2023	North/South Street	Max Madsen Access
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.94
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	17-273 - Downers Grove		
Lanas			

Lanes

.

. .

Major Street: East-West

venicle volumes and Adj	ustme	ents														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	0	0
Configuration		L	Т				Т	TR							LR	
Volume, V (veh/h)		2	1737				1919	1						1		7
Percent Heavy Vehicles (%)		0												0		0
Proportion Time Blocked																
Percent Grade (%)															0	
Right Turn Channelized		Ν	lo			Ν	10			Ν	lo			Ν	10	
Median Type/Storage				Left	Only								1			
Critical and Follow-up He	eadwa	iys														
Base Critical Headway (sec)		4.1												7.5		6.9
Critical Headway (sec)		4.10												6.80		6.90
Base Follow-Up Headway (sec)		2.2												3.5		3.3
Follow-Up Headway (sec)		2.20												3.50		3.30
Delay, Queue Length, and	d Leve	el of S	ervice	2												
Flow Rate, v (veh/h)		2													8	
Capacity, c (veh/h)		280													181	
v/c Ratio		0.01													0.04	
95% Queue Length, Q ₉₅ (veh)		0.0													0.1	
Control Delay (s/veh)		17.9													25.9	
Level of Service, LOS		С													D	
Approach Delay (s/veh)		0	.0				-				-	-		2	5.9	
Approach LOS														l	D	

HCS7 Two-Way Stop-Control Report

General Information		Site Information	
Analyst	BSM	Intersection	Ogden with Gerber/Fairway
Agency/Co.	KLOA, Inc.	Jurisdiction	IDOT
Date Performed	12/12/2017	East/West Street	Ogden Avenue
Analysis Year	2023	North/South Street	Gerber/Fairway Access
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	17-273 - Downers Grove		

Lanes

Major Street: East-West

Approach		Eastb	ound		Westbound Northbound Southbound												
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0	
Configuration		L	Т	TR		L	Т	TR			LTR				LTR		
Volume, V (veh/h)		4	2041	2		0	1330	7		10	0	33		4	0	0	
Percent Heavy Vehicles (%)		0				0				0	0	0		0	0	0	
Proportion Time Blocked																	
Percent Grade (%)										()		0				
Right Turn Channelized		N	lo	No						N	0		No				
Median Type/Storage				Left	Left Only 1												
Critical and Follow-up Headways																	
Base Critical Headway (sec)																	
Critical Headway (sec)																	
Base Follow-Up Headway (sec)																	
Follow-Up Headway (sec)																	
Delay, Queue Length, and	l Leve	el of S	ervice	•													
Flow Rate, v (veh/h)		4				0					46				4		
Capacity, c (veh/h)		491				254					108				83		
v/c Ratio		0.01				0.00					0.42				0.05		
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					1.8				0.1		
Control Delay (s/veh)		12.4				19.2					60.7				50.4		
Level of Service, LOS		В				С					F				F		
Approach Delay (s/veh)		0	.0			0	.0		60.7				50.4				
Approach LOS										F	:				:		

Copyright © 2017 University of Florida. All Rights Reserved.

HCS7 TM TWSC Version 7.1

HCS7 Two-Way Stop-Control Report

BSM		
DSIN	Intersection	Ogden with Gerber/Fairway
KLOA, Inc.	Jurisdiction	IDOT
12/12/2017	East/West Street	Ogden Avenue
2023	North/South Street	Gerber/Fairway Access
PM Peak Hour	Peak Hour Factor	0.94
East-West	Analysis Time Period (hrs)	0.25
17-273 - Downers Grove		
	KLOA, Inc. 12/12/2017 2023 PM Peak Hour East-West 17-273 - Downers Grove	KLOA, Inc. Jurisdiction 12/12/2017 East/West Street 2023 North/South Street PM Peak Hour Peak Hour Factor East-West Analysis Time Period (hrs) 17-273 - Downers Grove Jurisdiction

Lanes

.

- -

venicle volumes and Adj	ustme	ints															
Approach		Eastb	ound			West	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0	
Configuration		L	Т	TR		L	Т	TR			LTR				LTR		
Volume, V (veh/h)		3	1721	14		13	1903	2		4	0	14		2	0	9	
Percent Heavy Vehicles (%)		0				0				0	0	0		0	0	0	
Proportion Time Blocked																	
Percent Grade (%)											C		0				
Right Turn Channelized		No No							Ν	lo		No					
Median Type/Storage		Left Only 1															
Critical and Follow-up He	adwa	iys															
Base Critical Headway (sec)																	
Critical Headway (sec)																	
Base Follow-Up Headway (sec)																	
Follow-Up Headway (sec)																	
Delay, Queue Length, and	d Leve	l of S	ervice	5													
Flow Rate, v (veh/h)		3				14					19				12		
Capacity, c (veh/h)		284				334					150				137		
v/c Ratio		0.01				0.04					0.13				0.09		
95% Queue Length, Q ₉₅ (veh)		0.0				0.1					0.4				0.3		
Control Delay (s/veh)		17.8				16.3					32.4				33.8		
Level of Service, LOS		С				C					D				D		
Approach Delay (s/veh)		0	.0			0	.1			32	2.4		33.8				
Approach LOS										[C			I	D		

Copyright © 2017 University of Florida. All Rights Reserved.

HCS7 TM TWSC Version 7.1

Ogden with Gerber and Fairway Grove Access - PMPR.xtw

HCS7 Two-Way Stop-Control Report

General Information		Site Information	
Analyst	BSM	Intersection	Ogden with Proposed Acces
Agency/Co.	KLOA, Inc.	Jurisdiction	IDOT
Date Performed	12/12/2017	East/West Street	Ogden Avenue
Analysis Year	2023	North/South Street	Proposed Access Drive
Time Analyzed	AM Peak Hour	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	17-273 - Downers Grove		
Lanos			

anes

Major Street: East-West

Vehicle Volumes and Ad	justme	ents														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	0	0
Configuration		L	Т				Т	TR							LR	
Volume, V (veh/h)		6	2046				1336	4						1		2
Percent Heavy Vehicles (%)		0												0		0
Proportion Time Blocked																
Percent Grade (%)															0	
Right Turn Channelized		No No							No No							
Median Type/Storage		Left Only 1										1				
Critical and Follow-up H	eadwa	ays														
Base Critical Headway (sec)																
Critical Headway (sec)																
Base Follow-Up Headway (sec)																
Follow-Up Headway (sec)																
Delay, Queue Length, an	d Leve	el of S	ervice	9												
Flow Rate, v (veh/h)		6													3	
Capacity, c (veh/h)		490													217	
v/c Ratio		0.01													0.01	
95% Queue Length, Q ₉₅ (veh)		0.0													0.0	
Control Delay (s/veh)		12.4													21.8	
Level of Service, LOS		В													С	
Approach Delay (s/veh)		C	0.0	-		-	-			-	-	-		2	1.8	
Approach LOS	1													С		

HCS7 Two-Way Stop-Control Report

General Information		Site Information	
Analyst	BSM	Intersection	Ogden with Proposed Acces
Agency/Co.	KLOA, Inc.	Jurisdiction	IDOT
Date Performed	12/12/2017	East/West Street	Ogden Avenue
Analysis Year	2023	North/South Street	Proposed Access Drive
Time Analyzed	PM Peak Hour	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	17-273 - Downers Grove		
Lanes			

Vehicle Volumes and Ad	justme	ents															
Approach		Eastk	bound			West	bound			North	bound			Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	2	0	0	0	2	0		0	0	0		0	0	0	
Configuration		L	Т				Т	TR							LR		
Volume, V (veh/h)		4	1734				1913	3						4		7	
Percent Heavy Vehicles (%)		0												0		0	
Proportion Time Blocked																	
Percent Grade (%)															0		
Right Turn Channelized		No No						No No									
Median Type/Storage		Left Only 1															
Critical and Follow-up H	eadwa	ays															
Base Critical Headway (sec)																	
Critical Headway (sec)																	
Base Follow-Up Headway (sec)																	
Follow-Up Headway (sec)																	
Delay, Queue Length, an	d Leve	el of S	ervice	9													
Flow Rate, v (veh/h)		4													11		
Capacity, c (veh/h)		286													127		
v/c Ratio		0.01													0.09		
95% Queue Length, Q ₉₅ (veh)		0.0													0.3		
Control Delay (s/veh)		17.8													36.0		
Level of Service, LOS		С													E		
Approach Delay (s/veh)		C	0.0										36.0				
Approach LOS												E					

DRAFT MINUTES

VILLAGE OF DOWNERS GROVE PLAN COMMISSION MEETING

17-PLC-0039: A petition seeking approval of a Special Use to construct an automobile dealership. The property is currently zoned B-3, General Services and Highway Business. The property is located on the north side of Ogden Avenue, approximately 385 feet east of Cross Street, commonly known as 2410 Ogden Avenue, Downers Grove, IL (PINs 08-01-303-014, -015, -016, -017). Anas Alkhatib agent of Agri-Pes, LLC, Petitioner; Agri-Pes, LLC, Owner.

Mr. Scott Williams stated that the subject property is zoned B-3 and the petitioner proposes construction of an automobile dealership. He described the surrounding properties, and noted that the site has two access points to Ogden Avenue. The easternmost curb cut along Ogden Avenue will be eliminated. The site has been vacant for about two years and has little existing landscaping. He noted on the site plan the parking areas available on the site. He also pointed out the location of the trash enclosure. The petitioner meets or exceeds all zoning requirements for the location. He noted that there is sufficient space for both vehicle carriers and Fire Department vehicles.

Mr. Williams noted that the property line is almost on the street, and Public Works has requested the granting of a sidewalk easement. The petitioner's landscaping plan meets or exceeds Code requirements as well. The proposed 8500 square foot building is twostory and consists of the actual showroom, as well as rear service bays. He described the elevation as primarily steel, masonry and concrete with a brown colored metal clad paneling, and glazed overhead doors. He said the applicant has submitted a photometric plan with an average foot-candle rating of .1 at centerline of Ogden Avenue. With regard to the Comprehensive Plan Future Land Use Map, the location is shown as Corridor-Commercial.

Mr. Williams said that Staff believes the Special Use criteria have been met as it is an authorized special use, is a redevelopment of a vacant site, it meets the Comprehensive Plan and there have been conditions specific to limiting any potential adverse impact on adjacent properties including test drives in residential areas. Staff recommends approval subject to the seven conditions listed on page 5 of Staff's report dated January 8, 2018.

Ms. Johnson asked about plans for signage. Mr. Williams replied that signage shown will be facing Ogden Avenue.

Mr. Maurer clarified that their only request is for a Special Use for an auto dealership on Ogden Avenue in Downers Grove.

Ch. Gassen called upon the Petitioner to make its presentation.

Paul Chabez, Jr., of Phorma Designs, Inc. of Aurora, said they are taking the existing property that has an abandoned restaurant and replacing that building with a new building, new pavement, and new curb. The dealership will operate between the hours Plan Commission Meeting Jan. 8, 2018 1

DRAFT MINUTES

of 10 AM to 8 PM, Monday through Friday, and 11 AM to 6 PM on Saturday and Sunday. The delivery of vehicles will be scheduled on a weekly basis, with all loading and unloading taking place on the dealership lot.

Ch. Gassen said she thought that automobile dealerships were not allowed to be opened on Sundays. Ms. Leitschuh said she was not sure if there is a law limiting activity on Sunday.

Ms. Johnson noted a different address for Agri-Pes as 857 Willow Lane and asked that the address be corrected. She said she was also surprised to see customer parking in the street yard on their proposed site. Mr. Chabez said they planned to have customer parking in front with automobile display in the back.

Mr. Boyle asked about them reusing the existing building, and Mr. Chabez said the location and condition was not usable. Mr. Boyle asked about the storm drainage.

Mr. Anas Alkhatib replied that the correct address is 857 Willow Lane. As to the existing drainage, the plan is to sheet flow to the southwest corner of the property where there is a culvert that connects to the storm sewer. They will add catch basins to the site, and will keep the same volume and same optimal release.

In response to what kind of automobiles will be sold, Mr. Alkhatib said it is to be highend used cars with service and detailing available. They will have the site staffed every day.

Ch. Gassen called on the public for comments. There were no comments. She then closed the public portion of the hearing.

Ch. Gassen asked about the sidewalk easement, and Mr. Williams said the Village requested that so they can have access for repair and maintenance.

Mr. Maurer said this proposal looks better than what has been there, and he sees no reason to oppose this. They are asking for a Special Use that's allowed in that Zoning District. He sees it as a benefit.

Mr. Maurer moved with regard to File 17-PLC-0039 that the Plan Commission forward a positive recommendation to the Village Council to approve this request subject to Staff's seven conditions listed on page 5 of Staff's report dated January 8, 2018. Mr. Boyle seconded the Motion.

AYES: Mr. Maurer, Mr. Boyle, Ms. Johnson, Mr. Kulovany, Ms. Rollins, Ch. Gassen

NAYS: None

The Motion passed unanimously.

Mr. Williams said this item would also be forwarded to the Village Council for their review at their February 6, 2018 meeting.

•••••