ORD 2018-7680 Page 1 of 89

VILLAGE OF DOWNERS GROVE Rep3/29/30/18 VIllage

SUBJECT:	SUBMITTED BY:
2001 63rd Street - Planned Unit Development Amendment, Special Use and Plat of Subdivision	Stan Popovich, AICP Director of Community Development

SYNOPSIS

The petitioner is seeking approval of a Planned Unit Development amendment to construct a new drug store, a Special Use for a drive-through facility, and a Plat of Subdivision to create a new out-lot for future commercial development at 2001 63rd Street.

STRATEGIC PLAN ALIGNMENT

The goals for 2017-2019 include *Strong and Diverse Local Economy*.

FISCAL IMPACT

n/a

RECOMMENDATION

Approval on the March 6, 2018 active agenda. The Plan Commission removed staff condition #9 and unanimously recommended approval 7:0. The Plan Commission found that the proposal is an appropriate use in the district, compatible with the Comprehensive Plan, and meets all standards of approval for a Planned Unit Development Amendment (Section 28.12.040), Special Use (Section 28.12.050) and Plat of Subdivision (Section 20.505).

Staff recommends that condition #6, which requires the building design feature be extended across the entire length of the roof-line facing Woodward Avenue, remain. Staff believes the extended design feature creates a more attractive facade facing Woodward Avenue.

BACKGROUND

The applicant is proposing to construct a 10,500 square foot Walgreens pharmacy at 2001 63rd Street, the southwest corner of 63rd Street and Woodward Avenue. The property is zoned B-2/PUD, General Retail Business/Planned Unit Development and encompasses existing Planned Unit Development #1. The petitioner is requesting:

- A PUD Amendment to permit the construction of a Walgreens
- A Special Use for the construction of a drive-through
- A Plat of Subdivision to create the Walgreens out-lot and a second out-lot for future development

ORD 2018-7680 Page 2 of 89

The proposed development would include the demolition of a vacant restaurant building to make way for the convenience store and drive-through pharmacy. The petitioner is also proposing to create an additional outlot for future commercial use. There are no immediate plans to develop the out-lot. In the interim, the existing pavement will be removed, and the entire lot will be returned to greenspace per the landscape requirements, reducing the shopping center's overall impervious surface.

A similar proposal (16-PLC-0062) was approved in August 2017, although the siting, orientation, size, and architectural design of the building has been revised (see table below for comparison).

Walgreens	Previous Proposal	Current Proposal 17-PLC-
	16-PLC-0062	0041
		Nichiha fiber cement board
	Gray EIFS with red	(cedar, white brick, light brown
Exterior Finish Materials	accents	block), EIFS overhang
Building Location	Western side of lot	Northeast corner
Building Size	14,500 sq ft	10,500 sq ft
Parking Spaces (required/provided)	51/66	37/43
Building Height	29.3 ft	20 ft
Shopping Center Improvements	Yes	Yes
63 rd Street Improvements	Yes	Yes
Subdivision (2 original lots)	Reconfigured	Addition of 1 out-lot

Similar to the previous approval, Walgreens final approval and occupancy is contingent on making significant improvements to the entire shopping center including facade improvements and site improvements, including the consolidation of two curb cuts onto 63rd Street into a single three-quarters access curb cut. The petitioner has started to implement some of these improvements, and is in for permit review of the at-grade site work. The occupancy of Walgreens is still contingent on implementing all of the identified site and building façade improvements under 16-PLC-0062.

Compliance with the Zoning Ordinance

The property is zoned B-2/PUD, General Retail Business/Planned Unit Development (#1), established in the 1970s. The proposed Walgreens development is consistent with the requirements of the Zoning Ordinance, excepting the drive-through setback minimum distance and the location of the trash enclosure / loading dock in the street yard along Woodward Avenue. Staff finds the drive-through setback reduction of 4.5 feet is acceptable considering the proposed location further improves on-site circulation and better screens the service. Staff finds that the proposed dumpster/loading dock location is acceptable because it is a corner lot with the western primary entrance practically creating a third main street yard. The proposal screens the enclosure with identical building materials that complement the overall building while also providing substantial landscaping. The proposed Walgreens and site improvements will not negatively impact the amount of remaining parking for the rest of the shopping center. The applicant's proposal is consistent with the Village's Zoning Ordinance.

Compliance with the Comprehensive Plan

The Comprehensive Plan designates this property as Mixed Use, and it is identified as the only catalyst site within the 63rd Street focus area plan. The proposed Walgreens development meets many of the key concepts identified in the Plan:

• Encourage commercial expansion at key intersections where it is necessary to improve commercial vitality

ORD 2018-7680 Page 3 of 89

- Beautify and enhance landscaping at major intersections
- Enhance access and visibility
- Reduce the heat island effect through the use of light-colored building materials and shade

For this site, the Plan notes that new out-lots should be developed in conjunction with existing out-lots on this site to provide more visible and convenient shopping uses. The applicant's proposal is consistent with the Comprehensive Plan.

Compliance with the Subdivision Ordinance

The petitioner is proposing to create two new lots from the existing Lot 2. Lot 3 will be used for Walgreens and Lot 4 is the additional out-lot. The revised Lot 2, new Lots 3 and 4 will meet the minimum lot width and lot area requirements outlined in Section 20.301 of the Village's Subdivision Ordinance. The other two existing lots (Lot 1 and Lot 5) will remain the same size. The petitioner is providing a cross-access easement that connects the new 63rd Street access point to the northernmost access points along Belmont Road and Woodward Avenue. The easement is further extended to include the drive aisle in front of the Meadowbrook Shopping Center, and also wraps around Lot 5 to the south. This will ensure perpetual access through a non-exclusive easement for the benefit of all lots in the subdivision.

Engineering\Public Improvements

Post Construction Best Management Practices (PCBMPs) and detention are not required since the proposal results in a decrease in impervious area. The drainage for the site will tie into the existing stormwater system for the shopping center.

The petitioner is proposing to eliminate the dual full-access points onto 63rd Street and replace them with a single three-quarters access point. The eastbound right-turn lane will be extended at the request of DuPage County and will require land dedication. As a result of this, the petitioner may have to relocate or protect an existing Village water main. This will be determined during the permitting for the project. The traffic study found that the development's impact on the existing road network will be minimal, generating less than a two percent increase on 63rd Street traffic, with a significant number of pass-by trips. The study also concluded that the single full movement access drive will be adequate in accommodating the projected traffic and onsite vehicle deliveries.

Public Comment

No members of the public attended the Plan Commission meeting, and no inquiries were received about the project.

ATTACHMENTS

Ordinances

Resolution

Aerial Map

Staff Report with attachments dated February 5, 2018

Draft Minutes of the Plan Commission Hearing dated February 5, 2018

Revised east elevation

PUD #1 - Amendment 17-PLC-0041

ORDINANCE NO. _____

AN ORDINANCE APPROVING AN AMENDMENT TO PLANNED UNIT DEVELOPMENT #1 TO ALLOW CONSTRUCTION OF A CONVENIENCE STORE WITH DRIVE-THROUGH AT 2001 63RD STREET

WHEREAS, the Village Council has previously adopted Ordinance No. 1354, on September 16, 1968, designating the property described therein as Planned Unit Development #1 and subsequent amendments thereto; and,

WHEREAS, the Village Council has previously adopted Ordinance No. 5639, on August 8, 2017, approving an amendment to Planned Unit Development #1 to allow construction of a convenience store with drive-through at 2001 63rd Street; and,

WHEREAS, the Owners have filed a written petition with the Village conforming to the requirements of the Comprehensive Zoning Ordinance and requesting an amendment to Planned Unit Development #1 to allow construction of a convenience store with drive-through on the Meadowbrook & 63rd Street Shopping Center property located at 2001 63rd Street and,

WHEREAS, such request was referred to the Plan Commission of the Village of Downers Grove, and the Plan Commission has given the required public notice, conducted a public hearing for the petition on February 5, 2018, and has made its findings and recommendations, all in accordance with the statutes of the State of Illinois and the ordinances of the Village of Downers Grove; and,

WHEREAS, the Plan Commission has recommended approval of the requested petition, subject to certain conditions; and,

WHEREAS, the Village Council has considered the record before the Plan Commission, as well as the recommendations of Plan Commission.

NOW, THEREFORE, BE IT ORDAINED by the Council of the Village of Downers Grove, DuPage County, Illinois, as follows:

- <u>SECTION 1</u>. That the provisions of the preamble are incorporated into and made a part of this ordinance as if fully set forth herein.
- <u>SECTION 2</u>. That a Planned Unit Development Amendment is hereby authorized to approve construction of a convenience store with drive-through at 2001 63rd Street.
- <u>SECTION 3.</u> The approval set forth in Section 2 of this ordinance is subject to the findings and recommendations of the Downers Grove Plan Commission regarding File 17-PLC-0041 as set forth in the minutes of their February 5, 2018 meeting.
- <u>SECTION 4.</u> The approval set forth in Section 2 of this ordinance is subject to the following conditions:

- 1. The Planned Unit Development, Special Use and Plat of Subdivision shall substantially conform to the staff report dated February 5, 2018; and drawings prepared by Manhard Consulting Ltd, dated 12/20/2017 and resubmitted on 01/18/2018, except as such plans may be modified to conform to the Village codes and ordinances.
- 2. The site improvement work for the property must be completed per the Site Improvement Exhibit, dated 11/28/16, revised plan dated 01/19/2017, and approved by Village Council on August 8, 2017 prior to the issuance of the Certificate of Occupancy for Walgreens.
- 3. The Walgreens building shall be equipped with an automatic fire suppression system and an automatic and manual fire alarm system.
- 4. A fire hydrant shall be installed, including water/fire service line on the vacant out-lot for future use.
- 5. A separate sign permit will be required prior to installation of any wall or monument sign.
- 6. The white exterior insulation and finish system (EIFS) shall be extended across the entire length of the roof-line facing Woodward Avenue.
- 7. The EIFS on the building shall be maintained in accordance with the Village's currently adopted edition of the International Property Maintenance Code.
- 8. No building permits can be issued until the Final Plat of Subdivision is recorded.

SECTION 5. That the convenience store with drive-through is consistent with and complimentary to the overall planned unit development site plan and with the requirements of the "*B-2/PUD, General Retail Business/Planned Unit Development*" zoning district.

<u>SECTION 6</u>. That all ordinances or parts of ordinances in conflict with the provisions of this ordinance are hereby repealed.

SECTION 7. That this ordinance shall be in full force and effect from and after its passage and publication in pamphlet form as provided by law.

	Mayor
Passed:	·
Published:	
Attest:	
Village Clerk	

 $1\mbox{$\mbox{$\mbox{$$mw$} ord.18$} PUD\#1-2001-63^{rd}--Amd-17-PLC-0041}$

Page 6 of 89

2001 63rd Street - Location Map

ORD 2018-7680 Page 7 of 89

VILLAGE OF DOWNERS GROVE REPORT FOR THE PLAN COMMISSION FEBRUARY 5, 2018 AGENDA

SUBJECT:	TYPE:	SUBMITTED BY:
17-PLC-0041 2001 63 rd Street	PUD Amendment, Special Use and Plat of Subdivision	Rebecca Leitschuh, AICP Senior Planner

REQUEST

The petitioner is requesting approval for an amendment to Planned Unit Development #1 to allow the construction of a new Walgreens store, a Special Use to allow a drive-through pharmacy and a Plat of Subdivision at 2001 63rd Street

NOTICE

The application has been filed in conformance with applicable procedural and public notice requirements.

GENERAL INFORMATION

OWNER & APPLICANT: FL Cedar, LLC

477 Elm Place

Highland Park, IL 60035

PROPERTY INFORMATION

EXISTING ZONING: B-2/PUD, General Retail Business/Planned Unit Development

Shopping Center EXISTING LAND USE: PROPERTY SIZE: 69,753 sq ft (1.6 acres) 08-24-202-008 & -009 PINS:

SURROUNDING ZONING AND LAND USES

NORTH: R-4, Single Family Unincorporated Single-Family Attached

DuPage County

ZONING

R-6, Residential Apartment/Condo 6 SOUTH: Multi-Family Residential R-3, Residential Detached House 3 Single-Family Attached. EAST: Neighborhood Commercial

FUTURE LAND USE

WEST: Mixed Use B-2, General Retail Business

ANALYSIS

SUBMITTALS

This report is based on the following documents, which are on file with the Department of Community Development:

Page 2

- 1. Project Narrative
- 2. Plat of Survey
- 3. Architectural Plans
- 4. Engineering Plans
- 5. Landscape Plan
- 6. Photometric Plan
- 7. Elevations and Renderings
- 8. Traffic Impact Study
- 9. Neighborhood Meeting Summary Report
- 10. Plat of Subdivision

PROJECT DESCRIPTION

The applicant is proposing to construct a Walgreens pharmacy at 2001 63rd Street. A similar proposal (16-PLC-0062) was approved in August 2017, although the siting, orientation, size, and architectural design of the building has been revised. The subject area involves 1.6 acres of the 18.86 acre shopping center property, located at the southwest corner of 63rd Street and Woodward Avenue. The property is zoned B-2/PUD, General Retail Business/Planned Unit Development and encompasses existing Planned Unit Development #1. The petitioner is requesting:

- A PUD Amendment to permit the construction of a Walgreens
- A Special Use for the construction of a drive-through
- A Plat of Subdivision to create the Walgreens out-lot and a second out-lot for future development

The petitioner is proposing to build a new 10,500-square-foot Walgreens building at the southwest corner of the intersection of Woodward Avenue and 63rd Street. The proposed development would include the demolition of a vacant restaurant building at this location. The project site for this new building is approximately 1.08 acres and will include a convenience store and drive-through pharmacy with 43 parking spaces.

The petitioner is also proposing to create an additional out-lot (0.52 acres) for future commercial use through the final Plat of Subdivision. There are no immediate plans to develop the out-lot. In the interim, the existing pavement will be removed, and the entire lot will be seeded per the landscape requirements, reducing the shopping center's overall impervious surface.

The drive-through facility will be located on the south side of the building with one-way only traffic allowed with appropriate signage to direct traffic. An ADA accessible path is proposed from the corner of the 63rd/Woodward intersection to the entrance of the building. Parking is provided on the western side of the building, with four rows of parking and two full-access drive aisles, and exceeds the requirements of parking per the Zoning Ordinance. There will be two ADA accessible parking spaces adjacent to the building's main entrance as required. The trash compactor, transformer, and tote enclosure are located on the east side of the building, fully enclosed by a wall matching the style of the building.

The petitioner is proposing landscaping in conformance with the Village requirements. Landscaping is provided on all four sides of the property. A total of 34 shade trees are intermixed with shrubs and ornamental grasses around the perimeter, the interior parking lot islands, and the drive aisles. Parking lot and site lighting complies with Village requirements.

The previously approved Walgreens was clad principally in an exterior insulation and finish system (EIFS). The color scheme was principally gray with some red accents. Based on previous discussions, the petitioner has revised the exterior design of the building to minimize the use of EIFS, use fiber cement

Page 3

architectural panels as the principal material and provide a variety of colors and textures. The facades are broken up by a light brown (Tuscan) modern block face, a white (Chantilly Lace) smaller brick face, and a horizontal wood panel (Cedar), all made of fiber cement board. These materials are further varied with the use of a white EIFS overhang that runs along the roof line of the building on its street facing walls and main western entrance. The main entrance incorporates all of these elements, with the addition of windows and a white horizontal band, breaking the light brown block face. A sign is featured over the entrance.

The 63rd Street facing (north) elevation wraps the corners with the wood panel elements, and breaks up the expanse with windows on both corners. A vertical pier made of the small white brick panel anchors the main corner. A second building sign is proposed on the north elevation.

The Woodward Avenue (east) elevation continues to wrap the corner with wood panels, windows, and the white EIFS overhang. Staff requests a condition be made to extend the EIFS design element across the entire length of the eastern wall so as to bring greater design detail to the east elevation. A vertical pier, identical to the one on the western elevation, intersects the horizontal planes. The dumpster enclosure, while in a street yard, is designed to complement the building, incorporating the same fiber cement panel system.

The rear (south) wall has a canopy over the drive-through window, surrounded by the wood panel design. The horizontal white accent band continues from the other elevations. Roof top mechanical units will be screened from the public right-of-ways. All proposed signage for Walgreens complies with the square-footage requirements of the sign ordinance, including a single tenant monument sign at the northwest corner. The side interior wall sign, although not a location permitted by-right, is supported by staff since it identifies the main entrance.

A reference table is provided below with a quick comparison of the previously approved petition (16-PLC-0062) and the revised submittal.

Walgreens	16-PLC-0062	17-PLC-0041
Exterior Finish Materials	Gray EIFS with red accents	Nichiha fiber cement board (cedar, white brick, light brown block), EIFS overhang
Building Location	Western side of lot	Northeast corner
Building Size	14,500 sq ft	10,500 sq ft
Parking Spaces (required/provided)	51/66	37/43
Building Height	29.3 ft	20 ft
Shopping Center Improvements	Yes	Yes
63 rd Street Improvements	Yes	Yes
Subdivision (2 original lots)	Reconfigured	Addition of 1 out-lot

In the previous submittal to Plan Commission (16-PLC-0062), Walgreens final approval and occupancy was contingent on making significant improvements to the entire shopping center. The petitioner has started to implement some of these improvements, and is in for permit review of the at-grade site work. The occupancy of Walgreens will still be contingent on implementing all of the identified site and building façade improvements under 16-PLC-0062. These improvements include the following:

Page 4

- Removal of the existing 63rd Street dual access points and replacement with a single three-quarter access point
- Façade renovations for all shopping center buildings including new EIFS facades with corner treatments, accent bands and new column enclosures.
- Installation of new curbed landscape islands within the front parking lot
- Repaired parking lot and drive aisle along 63rd Street
- Repair of rear access drive and replacement of speed bumps within the rear access drive
- Removal of rear southernmost access point to Belmont Road
- Removal of excess pavement in southwest corner of the shopping center
- Repair of low lying area in the rear of the center which leads to ponding water

COMPLIANCE WITH THE COMPREHENSIVE PLAN

The Comprehensive Plan's Future Land Use Map designates this property as Mixed Use, and it is identified as the only catalyst site within the 63rd Street focus area plan. As a Mixed Use property, the plan recommends "a mix of land uses within a contiguous geographic boundary" serving more than one purpose. The 63rd Street Focus Area Plan notes that the Village should encourage commercial expansion at key intersections where existing commercial uses exist and where it is necessary to improve their vitality. The plan also identifies the enhancement of access and visibility within nearby parcels, and to connect nearby residential areas to shopping and services through pedestrian and bicycle access. In addition, commercial developments should attempt to reduce the urban heat island effect through shading and the use of light-colored building materials; of which both elements are incorporated in this proposal.

As a catalyst site, the plan notes that Meadowbrook Shopping Center should include a mix of uses, and that the site could be redeveloped to include both residential and commercial uses. The plan does not mandate that both residential and commercial uses be a part of a redevelopment. The plan merely identifies the potential for a mix of residential and commercial if the property is no longer viable as a commercial center. The Commercial and Office Area Goal #2 includes the objectives to promote the "... redevelopment of the Meadowbrook Mall and other outdated shopping centers" and to identify and work with "...underperforming and underutilized" sites. The goal encourages the Village to enhance the economic vitality, productivity, appearance and function of commercial corridors including 63rd Street. Additionally, the 63rd Street redevelopment concept graphic identifies commercial out-lots along 63rd Street, supporting the creation of two out-lots.

The proposed redevelopment is consistent with the goals of the Comprehensive Plan.

COMPLIANCE WITH ZONING ORDINANCE

The property is zoned B-2/PUD, General Retail Business/Planned Unit Development, established in the 1970s.

The bulk requirements of the proposed Walgreens development in the B-2/PUD zoning district are summarized in the following table:

Page 5

Zoning Requirements

2001 63 rd Street (Lot 3)	Required	Proposed
North Setback (Street Yard – 63 rd		
Street) - Building	25 ft	25.32 ft
East Setback (Street Yard –		
Woodward Avenue) - Building	25 ft	51.5 ft
South Setback (Rear Yard) -		
Building	n/a	31.5 ft
West Setback (Side Yard) -		
Building	n/a	133.5 ft
West Setback - Parking	n/a	3.5 ft
North Setback - Parking	25 ft	27.5 ft
South Setback – Parking	n/a	8 ft
Landscaped Open Space	4,714 sf (10%)	12,256 sf (26%)
Street yard Landscaped Open Space	2,357 sf (5%)	10,163 sf (22%)
Floor Area Ratio	0.75 (max)	0.22
Building Height	35 ft (max)	20 ft
Loading Setback	50 ft	67 ft
Parking Spaces	37	43
Drive-through Stacking	3	3
Drive-through Setback	25 ft	20.5 ft

The proposed Walgreens development is consistent with the requirements of the Zoning Ordinance, excepting the drive-through setback minimum distance. However, staff finds the setback reduction of 4.5 feet is acceptable considering the proposed location of the drive-through further improves on-site circulation and better screens the service. The proposed Walgreens and site improvements will not negatively impact the amount of remaining parking for the rest of the shopping center. The applicant's proposal is consistent with the Village's Zoning Ordinance.

COMPLIANCE WITH SUBDIVISION ORDINANCE

The petitioner is proposing to create two new lots out of the existing Lot 2 in the shopping center. Lot 3 will be used for Walgreens and Lot 4 is the additional out-lot. The revised Lot 2, new Lot 3 and Lot 4 will meet the minimum lot width and lot area requirements outlined in Section 20.301 of the Village's Subdivision Ordinance. The other two existing lots (Lot 1 and Lot 5) will remain the same size.

Meadowbrook Subdivision	Lot Width (req. 100 ft.)	Lot Depth (req. 140 ft.)	Lot Area (req. 10, 500 sq. ft.)
Lot 2	450.16 ft	475.81 ft	225,238 sq. ft. (5.17 ac)
Lot 3	163.41 ft	285 ft	47,138 sq. ft. (1.08 ac)
Lot 4	140.37 ft	163.41 ft	22,615 sq. ft. (0.52 ac)

The petitioner is providing a cross-access easement that connects the new 63rd Street access point to the northernmost access points along Belmont Road and Woodward Avenue. The easement is further extended

Page 6

to include the drive aisle in front of the Meadowbrook Shopping Center, and also wraps around Lot 5 to the south. This will ensure perpetual access through a non-exclusive easement for the benefit of all lots in the subdivision. Additionally, the petitioner is providing the required five-foot wide public utility and drainage easements along the side lot lines and the ten-foot wide public utility and drainage easements along the rear lot lines for Lots 3 and 4.

ENGINEERING/PUBLIC IMPROVEMENTS

There is a net decrease in the impervious area and therefore new stormwater detention is not required. The drainage for the site will tie into the existing stormwater system for the shopping center. The petitioner will be required to meet all Village engineering standards and comply with all applicable codes when formally submitting for a permit.

The petitioner is proposing to eliminate the dual full-access points onto 63rd Street and replace them with a single three-quarters access point. The two current 63rd Street access points are approximately 30 feet from each other. These two access points can create confusion and conflict points for both drivers entering and exiting the site and also for pedestrians walking along the 63rd Street sidewalk. In conjunction with DuPage County, the petitioner has proposed to combine these access points into a single access point. The single access will allow both eastbound and westbound 63rd Street traffic to enter the site, but will limit the exit point to a right-turn (eastbound) only. DuPage County is requiring the petitioner to dedicate land along 63rd Street to extend the turn lane going east. At time of permit, the petitioner will have to verify the location and elevation of an existing Village water main. As a result of the right-turn lane extension, the petitioner may have to relocate or protect the existing water system.

TRAFFIC

A traffic impact study for the proposed development was completed by the petitioner. The study examined the existing 63rd Street and Woodward Avenue traffic conditions and the future conditions based on the proposed development.

The study found that the proposed new store will generate new trips during the weekday evening and Saturday midday peak hours; however, this will not have a detrimental effect on the shopping center or surrounding properties given the multiple access points on the site. The total existing traffic on 63rd Street is over 27,000 vehicles per day, which will be increased by less than 2% with the proposed development. Also noted in the study is the significant number of pass-by trips. Pass-by trips are vehicles that are already using 63rd Street but will now stop at the proposed development and do not represent an increase in traffic.

The study also considers the conversion of the dual full-access points on 63rd Street to a three-quarter access, prohibiting left turns on 63rd Street, as an improvement and reduction in traffic conflict points for the property. Removing these conflict points will reduce the opportunity for crashes. The proposed development's impact on the geometry of 63rd Street should provide a safety benefit.

PUBLIC SAFETY REQUIREMENTS

The Fire Prevention Division reviewed the proposed development and determined that sufficient access to and around the site is provided for emergency vehicles. The site layout permits Fire Department apparatus the opportunity to enter and exit the site from both 63rd Street and Woodward Avenue. The building will be required to include a fire alarm and sprinkler system that meet the Village's code requirements. A fire hydrant will be required to be installed as part of this approval on the vacant lot for future use.

NEIGHBORHOOD COMMENT

Notice was provided to all property owners 250 feet or less from the property in addition to posting public

Page 7

hearing notice signs and publishing the legal notice in the *Downers Grove Suburban Life*. No public comments have been received by staff.

The petitioner held a neighborhood meeting on November 28, 2017 with four current tenants in attendance. Questions were asked about construction timing, and shopping center signage and improvements. The applicant responded to each of these topics during the meeting and has provided a summary of the meeting that is attached

FINDINGS OF FACT

The petitioner is requesting a Planned Unit Development Amendment, a Special Use and a Plat of Subdivision to construct a new retail and pharmacy store at 2001 63rd Street. Staff finds that the proposal meets the standards for granting a Planned Unit Development Amendment, a Special Use and Plat of Subdivision as outlined below:

Section 28.12.040.C.6 Review and Approval Criteria

The decision to amend the zoning map to approve a PUD development plan and to establish a PUD overlay district are matters of legislative discretion that are not controlled by any single standard. In making recommendations and decisions regarding approval of planned unit developments, review and decision-making bodies must consider at least the following factors:

a. The zoning map amendment review and approval criteria of Sec. 12.030.I.

As previously noted, the shopping center was approved as a Planned Development in the 1970s. Section 4.030.C of the Zoning Ordinance, adopted in 2014, notes that all previously approved Planned Developments were reclassified as Planned Unit Developments. As such, a rezoning is not required and this standard does not apply.

b. Whether the proposed PUD development plan and map amendment would be consistent with the comprehensive plan and any other adopted plans for the subject area.

The proposed project is consistent with the Comprehensive Plan. The plan identifies this area as *Mixed Use*. This property is an existing shopping center and the proposed use will be compatible with the other uses. The site is well suited to accommodate a drive-through pharmacy. The proposed development is consistent with the policy recommendation that mixed use areas provide a variety of land uses within a pedestrian accessible neighborhood. The proposed improvements will enhance the economic vitality productivity, appearance and function of the shopping center as identified in Commercial and Office Area Goal #2.

The proposed project is consistent with the Comprehensive Plan and the 63rd Street focus area plan. The project is designed in a manner that is compatible with surrounding land uses. The proposed Walgreens and both the building and site improvements to the shopping center will improve the vitality of the center. The proposed removal of two access points onto 63rd Street and the installation of a single three-quarters access point will enhance access to 63rd Street while improving safety. A second new out-lot is proposed, that is consistent with the redevelopment concept sketch while also revitalizing an aged shopping center.

The Focus Ara Plan notes a mix of uses could be provided if the property is no longer viable as a commercial center. The improvements proposed by the property owner show that the owner believes a redevelopment of the commercial space is feasible and will lead to enhanced economic vitality in the center.

This standard has been met.

Page 8

- c. Whether PUD development plan complies with the PUD overlay district provisions of Sec. 4.030. The proposed project meets several of the PUD overlay district provisions and objectives as found in Section 4.030 of the Zoning Ordinance. The PUD is consistent with and helps advance the goals of the Comprehensive Plan. The development also meets the PUD overlay district provisions by providing a high quality building that is compatible with other developments along 63rd Street while providing attractive, high-quality landscaping for the Walgreens site and numerous upgrades to the property. Improvements have been proposed to improve motorized and non-motorized travel on-site such as a reduction of dual access points along 63rd Street to a single access point which increases safety along the public right-of-way and an accessible route connecting the front entrance of the building to the sidewalk. This standard has been met.
- d. Whether the proposed development will result in public benefits that are greater than or at least equal to those that would have resulted from development under conventional zoning regulations. The proposed development will result in a new convenience store and pharmacy for the neighborhood, and an additional out-lot for future commercial development, in compliance with the Comprehensive Plan. The proposed development meets many objectives of the Comprehensive Plan and furthers the vision of the Village to improve 63rd Street. The new building will enhance the aesthetics of the shopping center and 63rd Street. The public benefits include the replacement of dual access points to 63rd Street with a single three-quarters access point. This will eliminate conflicts between vehicles and vehicles and pedestrians. The building and site improvements will enhance the vitality of the shopping center and this section of 63rd Street. This standard has been met.
- e. Whether appropriate terms and conditions have been imposed on the approval to protect the interests of surrounding property owners and residents, existing and future residents of the PUD and the general public.

There are several conditions noted below that will protect the interests of the surrounding neighborhood and the general public. The conditions below are being requested to ensure that the proposed development satisfies all applicable codes and requirements. The project will advance many goals and objective laid out in the current and updated Comprehensive Plan and the conditions listed below will ensure that these goals and objectives are met. Several improvements provided by the petitioner for the existing shopping center (through 16-PLC-0062) will enhance the overall property and will be an improvement for the neighborhood. This standard has been met.

Section 28.12.050.H Approval Criteria

No special use may be recommended for approval or approved unless the respective review or decision-making body determines that the proposed special use is constituent with and in substantial compliance with all Village Council policies and plans and that the applicant has presented evidence to support each of the following conclusions:

- 1. That the proposed use is expressly authorized as a Special Use in the district in which it is to be located; The property is located in the B-2/PUD, General Retail Business/Planned Unit Development zoning district. Under Section 5.010 of the Zoning Ordinance, a drive-through facility is listed as an allowable Special Use in the B-2 zoning district. This standard has been met.
- 2. That the proposed use at the proposed location is necessary or desirable to provide a service or a facility that is in the interest of public convenience and will contribute to the general welfare of the neighborhood or community.

The proposed drive through pharmacy is a desirable service to the community and will contribute to the general welfare of the Village. The drive-through pharmacy provides a convenient service to the

Page 9

community. The development will cater to the local customers as desired in the existing Comprehensive Plan and will meet many goals and objectives outlined in both the current and updated Comprehensive Plan. This standard has been met.

3. That the proposed use will not, in the particular case, be detrimental to the health, safety or general welfare of persons residing or working in the vicinity or be injurious to property values or improvements in the vicinity.

The proposed drive-through will not be detrimental to the health, safety or general welfare of persons residing in or working in the vicinity and will not be injurious to property values or improvements in the vicinity. The drive-through is located along the southern wall, away from residential properties and from adjacent public sidewalks, with ample landscaping to screen properties across the street. The location of the building will lead to other improvements including the elimination of dual access points onto 63rd Street which will create a safer driving and walking environment in this area. This standard is met.

Section 20.301 – Plat of Subdivision

The proposed subdivision meets the minimum lot area and width requirements of Sections 20.301 of the Subdivision Ordinance.

RECOMMENDATIONS

The proposed Planned Unit Development Amendment, Special Use for a drive through and the Plat of Subdivision for the new development in Meadowbrook Shopping Center at 2001 63rd Street is consistent with the current and updated Comprehensive Plans, the Zoning Ordinance, the Subdivision Ordinance and surrounding zoning and land use classifications. Based on the findings listed above, staff recommends the Plan Commission recommend the Village Council **approve** the requested Planned Unit Development Amendment, Special Use and Plat of Subdivision as requested in case 17-PLC-0041 subject to the following conditions:

- 1. The Planned Unit Development, Special Use and Plat of Subdivision shall substantially conform to the staff report; and drawings prepared by Manhard Consulting Ltd, dated 12/20/2017 and resubmitted on 01/18/2018, except as such plans may be modified to conform to the Village codes and ordinances.
- 2. The site improvement work for the property must be completed per the Site Improvement Exhibit, dated 11/28/16, revised plan dated 01/19/2017, and approved by Village Council in August 2017 prior to the issuance of the Certificate of Occupancy for Walgreens.
- 3. The Walgreens building shall be equipped with an automatic suppression system and an automatic and manual fire alarm system.
- 4. A fire hydrant shall be installed, including water/fire service line on the vacant out-lot for future use.
- 5. A separate sign permit will be required prior to installation of any wall or monument sign.
- 6. The white exterior insulation and finish system (EIFS) shall be extended across the entire length of the roof-line facing Woodward Avenue.
- 7. The EIFS on the building shall be maintained in accordance with the Village's currently adopted edition of the International Property Maintenance Code.
- 8. No building permits can be issued until the Final Plat of Subdivision is recorded.
- 9. A pedestrian connection shall be provided from Woodward Avenue across the southern property line of Lot 3.

 $17\text{-PLC-}0041;\,2001\,\,63^{rd}\,\,Street$ February 5, 2018

Page 10

10. The petitioner shall provide elevations of new pavement over the water main in response to the right-turn lane extension per DuPage County. Petitioner shall protect and/or relocate existing water system if necessary.

Staff Report Approved By:

Stanley J. Popovich, AICP

Director of Community Development

SP; rl -att ORD 2018-7680 Page 17 of 89

December 20, 2017 Revised: January 18, 2018

Mr. Stan Popovich Village of Downers Grove 801 Burlington Avenue Downers Grove. IL 60515

Re: Project Summary/Narrative

Proposed Walgreens

SW Corner 63 Street and Woodward Avenue

Dear Mr. Popovich:

Please accept this letter as a request by FL Cedar, LLC (Owner) for approval of the application for Special Use for a Drive-Thru, Amendment to Existing PUD, and a Plat of Subdivision.

The original Petition for Plan Commission of this PUD Amendment was summited to the Village of Downers Grove on November 29, 2016 under Village Project No. 16-PLC-0062. Upon Village review, the PUD Amendment was approved by the Village Council (Ordinance No. 5640 and 5641) on August 8, 2017. Since that time, the end user has chosen to modify the total square footage of the proposed Walgreens facility. As a result of this change, the site plan and parking configuration has been updated accordingly. Furthermore, the proposed lot configuration has been adjusted based on the revised site plan. A convenience store, pharmacy, and drive thru pharmacy will remain part of the new Petition for Plan Commission.

The project site is located at the southwest corner of 63rd Street and Woodward Avenue. The project site is approximately 1.6 acres, and it is currently occupied by an existing building. This existing building was formerly used as a restaurant. The site has frontage along the 63rd Street to the north and Woodward Avenue to the east. The south and west boundaries are abutting the existing shopping center parking lot and drive aisles. The project site has access to 63rd Street and Woodward Avenue via the existing shopping center. The site is currently zoned B-2 PD (General Retail Business Planned Development).

The Owner proposes to demolish the existing unoccupied building and construct a new 10,500 SF Walgreens store including a pharmacy drive-thru, 41 parking spaces, and associated landscaping. The Walgreens will consist of a convenience store, pharmacy, and drive thru pharmacy. The store will employ approximately 35 part-time and full-time employees that will work on various assigned shifts. The hours of operation are proposed to be 8:00 am to 10:00 pm for the store and 8:00 am to 8:00 pm for the pharmacy and the drive-thru. The Owner is proposing to combine the existing dual access points off 63rd Street into one access point. Coordination with DuPage County Division of Transportation is ongoing.

In addition to the proposed Walgreens, the Owner is also coordinating with the Village on providing numerous upgrades to the existing shopping center including existing façade improvements, asphalt repairs to the east-west drive aisle and north parking lot, asphalt repairs and traffic calming measures to the rear drive aisle in the southern portion of the shopping center, and landscaping improvements to the shopping center parking lot. The referenced overall shopping center improvements are currently under review by the Village of Downers Grove Staff, and an ordinance approving the Amendment to Planned Unit Development (P.U.D.) was approved by the Village Council (Ordinance No. 5641) on August 8, 2017.

ORD 2018-7680 Page 18 of 89

The proposed Walgreens is a permitted use by right in the B-2 General Retail Business district. The drive-thru requires a Special Use approval.

For additional detailed information, please also refer to the submitted plans titled Proposed Walgreens, dated 12/20/2017 (Revised 01/18/18) prepared by Manhard Consulting, as well as plans, elevations and renderings dated 12/20/2017 (Revised 01/18/18) prepared by Camburas & Theodore, Ltd.

The requested Special Use Approval, Plat of Subdivision, and Amendment to Existing PUD are in conformance with the Village Municipal Code standards and the following is the evidence to support these request:

Request for Special Use Approval Criteria (Section 28.12.050.H)

No special use may be recommended for approval or approved unless the respective review or decisionmaking body determines that the proposed special use is consistent with and in substantial compliance with all village council policies and plans and that the applicant has presented evidence to support each of the following conclusions:

- 1. that the proposed use is expressly authorized as a special use in the district in which it is to be located; The proposed use is expressly authorized as a special use in the B-2 General Retail Business district.
- 2. that the proposed use at the proposed location is necessary or desirable to provide a service or a facility that is in the interest of public convenience and will contribute to the general welfare of the neighborhood or community; The proposed use at the proposed location is necessary and desirable as it provides a convenience to the community as well as additional safety for customers of the pharmacy. Customers, as a result of the drive-thru facility, are not required to park, exit their vehicle, and walk into the store in order to get a prescription filled.
- 3. that the proposed use will not, in the particular case, be detrimental to the health, safety, or general welfare of persons residing or working in the vicinity or be injurious to property values or improvements in the vicinity. The proposed use will be a benefit to the health, safety, and general welfare of the community as the drive thru provides for additional safety as customers are not required to park, exit their vehicle, and walk into the store in order to get a prescription filled. The proposed use will not be injurious to property values or improvements in the vicinity as there will be a newly constructed building, new parking lot, new landscaping, and a new ADA accessible route from the building to the adjacent roadway right-of-way. These proposed improvements will be in conformance with the Village Municipal Code and standards.

Request Amendment to Existing PUD (Section 28.12.040.C.6)

The decision to amend the zoning map to approve a PUD development plan and to establish a PUD overlay district are matters of legislative discretion that are not controlled by any single standard. In making recommendations and decisions regarding approval of planned unit developments, review and decision-making bodies must consider at least the following factors:

- a. the zoning map amendment review and approval criteria of Sec. 12.030l in the case of new Planned Unit Development proposals; **This is an existing PUD.**
- b. whether the proposed PUD development plan and map amendment would be consistent with the comprehensive plan and any other adopted plans for the subject area; The PUD Development Plan is consistent with the comprehensive plan as this site is located within the Corridor Commercial area.
- c. whether PUD development plan complies with the PUD overlay district provisions of Sec. 4.030; **The PUD Development plan is in conformance with the vision and goals of the comprehensive plan.**

ORD 2018-7680 Page 19 of 89

d. whether the proposed development will result in public benefits that are greater than or at least equal to those that would have resulted from development under conventional zoning regulations; and The public benefits are greater than those that would have resulted from the conventional zoning because of the added convenience to the community as well as additional safety for customers who are not required to park, exit their vehicle, and walk into the store in order to get a prescription filled.

e. whether appropriate terms and conditions have been imposed on the approval to protect the interests of surrounding property owners and residents, existing and future residents of the PUD and the general public. The proposed use is unobtrusive and does not create noise issues. The proposed use is buffered effectively by not only the natural terrain, but by both 63rd Street and Woodward Avenue to the north and east respectively.

Planned Unit Development Overlay District Provisions (Section 4.030.A.2)

Different types of PUDs will achieve different planning goals. In general, however, PUDs should include elements that further some or all of the following objectives:

- a. implementation of and consistency with the comprehensive plan and other relevant plans and policies; The subject site is located in, and consistent with, the Corridor Commercial area.
- b. flexibility and creativity in responding to changing social, economic and market conditions allowing greater public benefits than could be achieved using conventional zoning and development regulations; **Not applicable**
- c. efficient and economical provision of public facilities and services; Not applicable
- d. variety in housing types and sizes to accommodate households of all ages, sizes, incomes and lifestyle choices; **Not applicable**
- e. compact, mixed-use development patterns where residential, commercial, civic and open spaces are located in close proximity to one another; **Not applicable**
- f. a coordinated transportation system that includes an inter-connected hierarchy of facilities for motorized and non-motorized travel; The existing subject site includes cross access drive aisles for motorized travel that connect Woodward Avenue and Belmont Road without having to utilize 63rd Street. The proposed development will utilize these existing cross access drives. Additionally, the reduction of dual access points along 63rd Street to a single access point is an increase in the safety of the public. Non-motorized travel will be accommodated by the proposed accessible route from the front of the proposed building to the existing sidewalks at the southwest corner of 63rd Street and Woodward Avenue.
- g. high-quality buildings and improvements that are compatible with surrounding areas, as determined by their arrangement, massing, form, character and landscaping; In addition to the proposed Walgreens, the Owner is also coordinating with the Village on providing numerous upgrades to the existing shopping center including existing façade improvements, asphalt repairs to the eastwest drive aisle and the north parking lot area, asphalt repairs and traffic calming measures to the rear drive aisle in the southern portion of the shopping center, and additional landscaping in the existing shopping center parking lot. The referenced overall shopping center improvements are currently under review by the Village of Downers Grove.
- h. the protection and enhancement of open space amenities and natural resource features; In addition to the proposed Walgreens landscaping and open space, the Owner is also coordinating with the Village on providing numerous landscaping improvements within the existing shopping center parking lot. The referenced overall shopping center improvements are currently under review by the Village of Downers Grove.

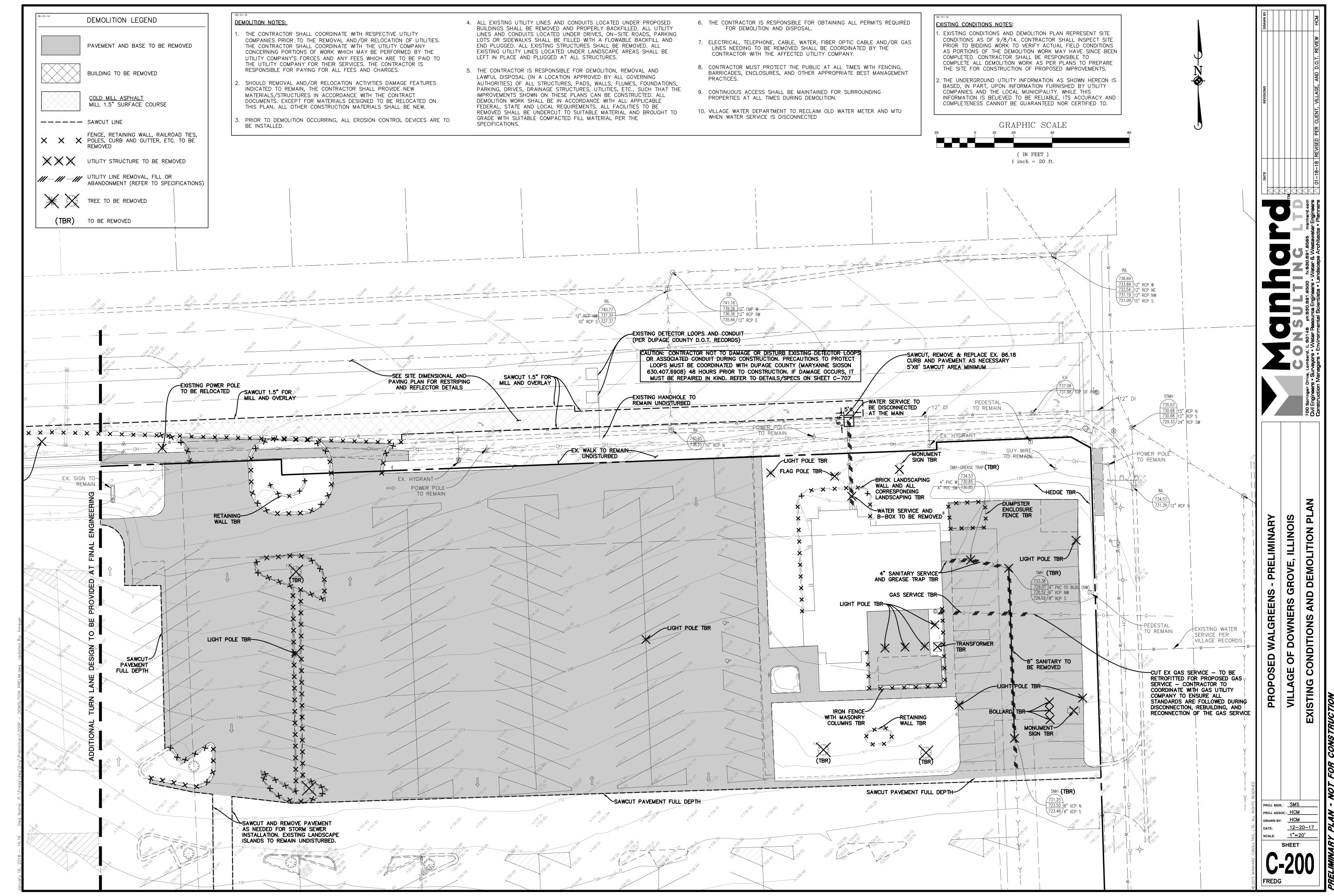
ORD 2018-7680 Page 20 of 89

i. the incorporation of sustainable development features including green infrastructure practices in landscapes and parking area, to maximize the aesthetic and water quality benefits of best practices in stormwater management; and **The proposed Walgreens landscaping and open space meets, and in some cases exceeds, the Village Municipal Code and standards.**

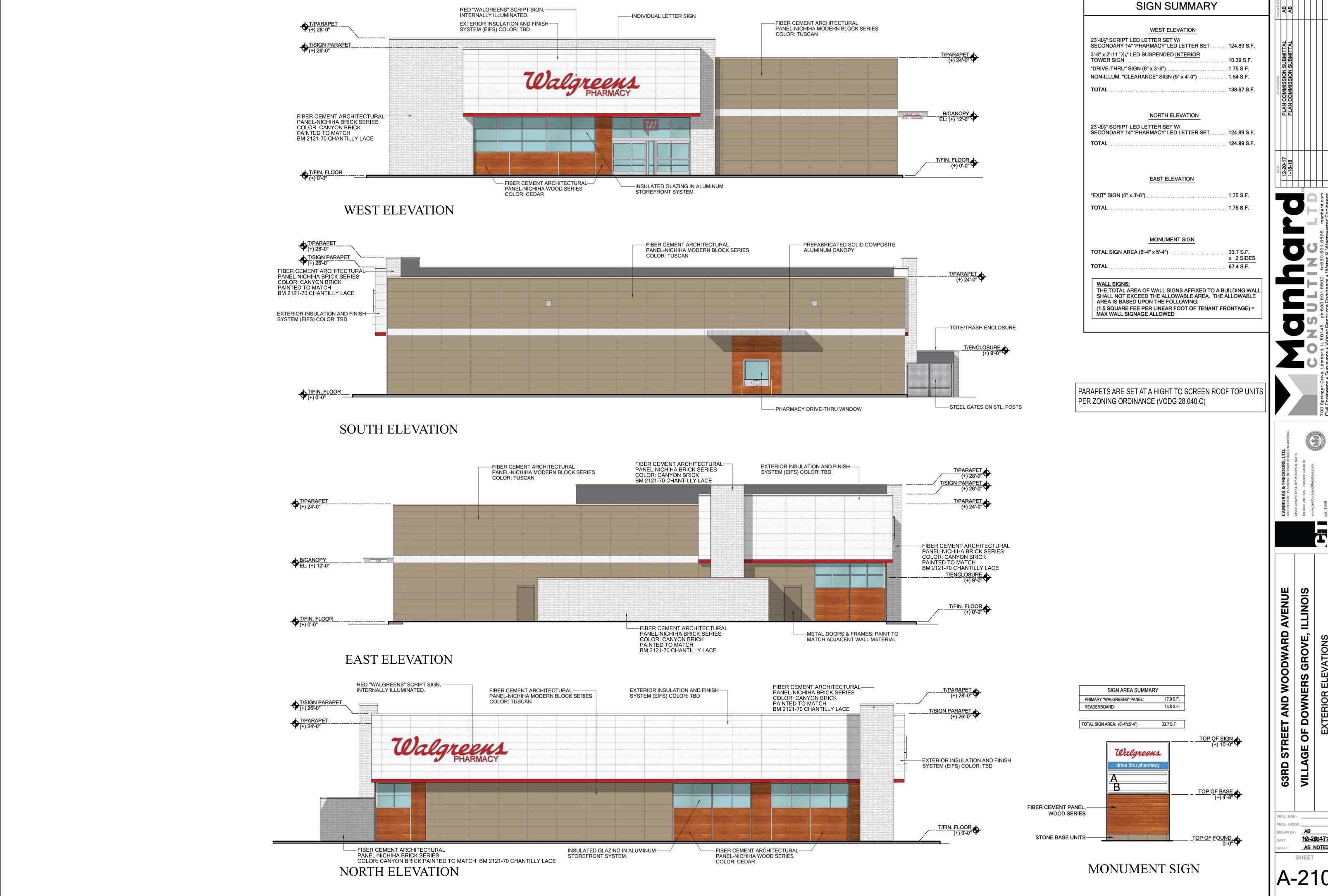
j. attractive, high-quality landscaping, lighting, architecture and signage, including the use of native landscaping that reflects the unique character of the village and the surrounding area. The proposed Walgreens landscaping, open space, lighting, and signage meets the Village Municipal Code and standards and does reflect the unique character of the village. The numerous upgrades to the existing shopping center façade, parking lot, and landscaping will also provide a significant enhancement to the surrounding area. The referenced overall shopping center improvements are currently under review by the Village of Downers Grove.

Developer's Statement of Intent Section 4.030.D

The proposed project is an amendment to an existing PUD and consists of the demolition of an existing building (former restaurant) and construction of a new 10,500 SF Walgreens store including a pharmacy drive-thru, 41 parking spaces, new site lighting, and landscaping. The project also includes numerous upgrades to the existing shopping center including existing façade improvements, asphalt repairs to the east-west drive aisle and the north parking lot area, asphalt repairs and traffic calming measures to the rear drive aisle in the southern portion of the shopping center, and additional landscaping in the shopping center parking lot.

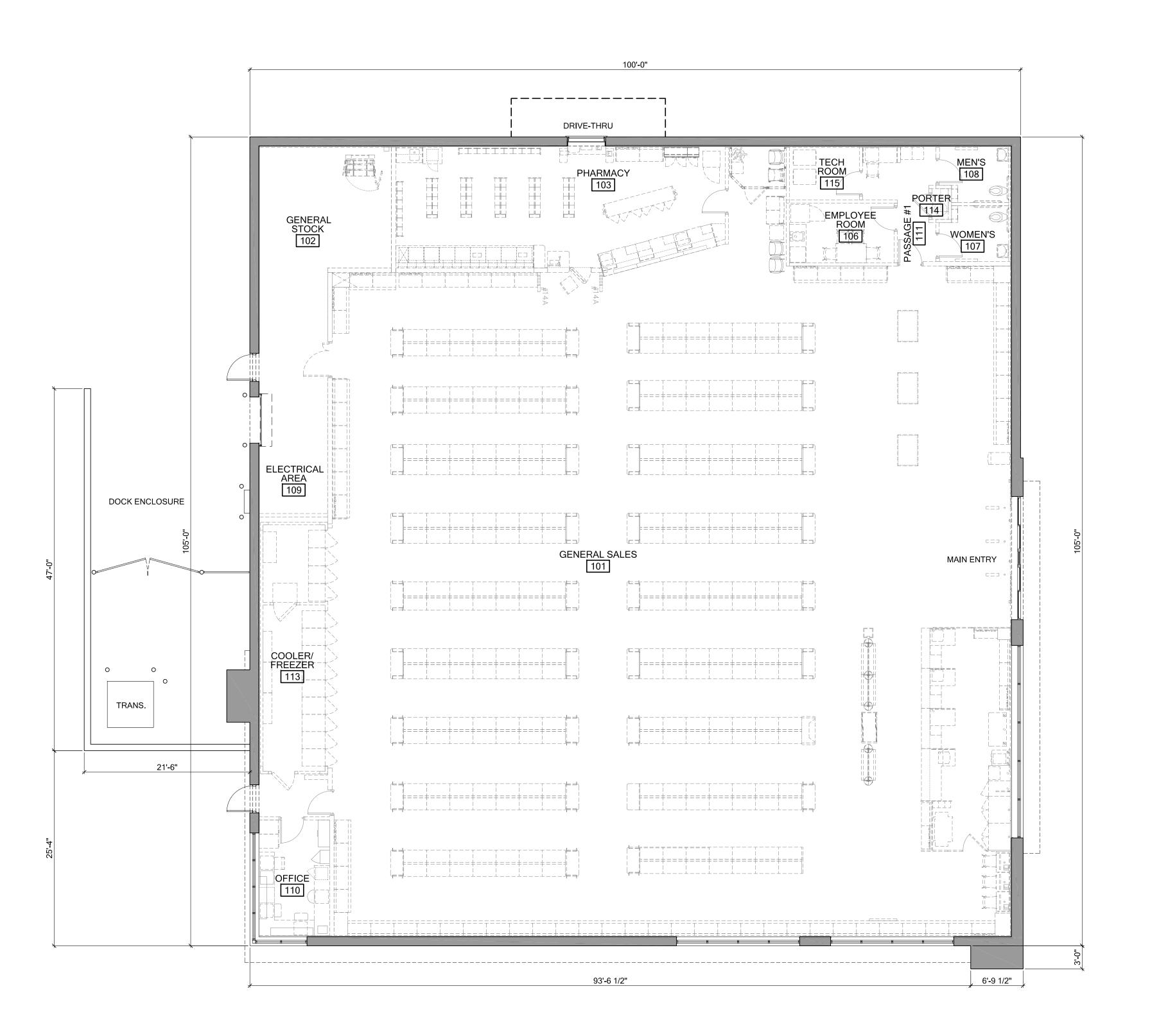

There are many benefits to the existing shopping center, the surrounding area, and the community. Access to over the counter and prescription medication is a rudimentary need and a necessity to the community. The proposed drive-thru will be a benefit to the health, safety, and general welfare of the community as the drive thru provides for additional safety as customers are not required to park, exit their vehicle, and walk into the store in order to get a prescription filled. The reduction of dual access points along 63rd Street to a single access point is an increase in the safety of the public. The new ADA accessible route from the building to the adjacent roadway right-of-way will provide a benefit to the pedestrians along Woodward Avenue and 63rd Street. The numerous upgrades to the existing shopping center will enhance the overall appearance of the shopping center while also making the shopping center much better and safer for the community.

We appreciate the opportunity to present this project to you for approval. If you have any questions or require additional clarification, please do not hesitate to contact us at 773-571-4199.


Sincerely,

Perrine Knight FL Cedar, LLC

ORD 2018-7680



Page 22 of 89

1/2-200177 AS NOTED

ORD 2018-7680 Page 23 of 89

AVENUE STREET AND WOODWARD GROVE,

DOWNERS 63RD VILLA

PROJ. MGR.: DRAWN BY: AB DATE: <u>12-20-17</u> AS NOTED

SHEET

ORD 2018-7680 Page 24 of 89

43 SPACES

694 SPACES

63RD STREET

-EX. RECESSED REFLECTIVE PAVEMENT-

MARKERS TO REMAIN (TYP.)

EX. PAVEMENT

MARKINGS_TBR -

TYP.BX

SITE DATA

LOT 3 (WALGREENS) AREA 1.08 ACRES

1.60 ACRES

0.52 ACRES

43 SPACES

TOTAL PROPERTY AREA

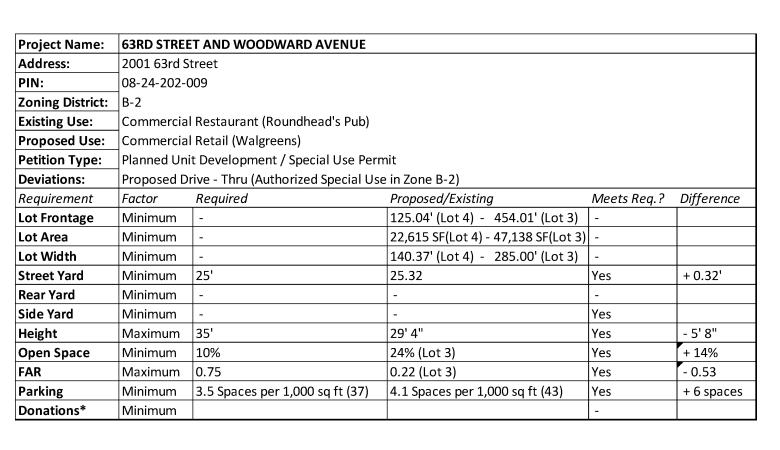
PARKING PROVIDED

LOT 4 (OUTLOT) AREA

IMPROVEMENTS ADJACENT TO BUILDING, IF SHOWN, SUCH AS TRUCK DOCK, RETAINING WALLS, SIDEWALKS, CURBING, FENCES, CANOPIES, RAMPS, HANDICAP ACCESS, PLANTERS, DUMPSTERS, AND SITE DIMENSIONAL AND PAVING NOTES: ALL DIMENSIONS ARE FACE OF CURB TO FACE OF CURB OR TRANSFORMERS ETC. HAVE BEEN SHOWN FOR APPROXIMATE BUILDING FOUNDATION UNLESS NOTED OTHERWISE. LOCATION ONLY. REFER TO ARCHITECTURAL PLANS FOR EXACT LOCATIONS, SPECIFICATIONS AND DETAILS. ALL PROPOSED CURB AND GUTTER SHALL BE B6.12 UNLESS OTHERWISE NOTED. 7. LOCATION OF PRIVATE SIDEWALKS SHALL BE COORDINATED WITH PROPOSED DOORWAY. CONTRACTOR TO VERIFY ACTUAL BUILDING 3. ALL CURB RADII SHALL BE 3' MEASURED TO FACE OF CURB PLAN LOCATIONS WITH ARCHITECT/DEVELOPER PRIOR TO UNLESS NOTED OTHERWISE. CONSTRUCTING THE SIDEWALKS. 4. TIE ALL PROPOSED CURB AND GUTTER TO EXISTING CURB AND 8. ALL ROADWAY AND PARKING LOT SIGNAGE, STRIPING, SYMBOLS, GUTTER WITH 2-#6 BARS x 18" LONG DOWELED INTO EXISTING ETC. SHALL BE IN ACCORDANCE WITH LATEST JURISDICTIONAL GOVERNMENTAL ENTITY DETAILS BUILDING DIMENSIONS AND ADJACENT PARKING HAVE BEEN 9. SOME EXISTING ITEMS TO BE REMOVED HAVE BEEN DELETED FROM THIS PLAN FOR CLARITY. SEE DEMOLITION PLAN FOR ITEMS PREPARED BASED UPON ARCHITECTURAL INFORMATION CURRENT AT THE DATE OF THIS DRAWING. SUBSEQUENT ARCHITECTURAL CHANGES MAY EXIST. THEREFORE CONTRACTOR SHALL REFER TO 10. DEPRESS CURB & GUTTER AT ALL SIDEWALK AND PATH LOCATIONS ARCHITECTURAL PLANS FOR PRECISE BUILDING DIMENSIONS AND NOTIFY THE ARCHITECT AND ENGINEER OF ANY DISCREPANCIES FOR HANDICAP ACCESS PER FEDERAL AND STATE STANDARDS. PRIOR TO CONSTRUCTION. BUILDING DIMENSIONS SHOWN SHOULD NOT BE USED FOR CONSTRUCTION LAYOUT OF BUILDING. 11. THE CONTRACTOR SHALL CONTACT J.U.L.I.E. (1-800-892-0123) PRIOR TO ANY WORK TO LOCATE UTILITIES AND SHALL CONTACT THE OWNER SHOULD UTILITIES APPEAR TO BE IN CONFLICT WITH THE PROPOSED IMPROVEMENT. 12. ALL TRAFFIC SIGNS SHALL BE INSTALLED AT 7' HIGH, MEASURED BENCHMARK: FROM THE GROUND ELEVATION TO THE BOTTOM OF THE SIGN. OURCE BENCHMARK 13. THE STOP BAR AT 63RD STREET DRIVEWAY SHALL BE DUPAGE COUNTY 2006 GEODETIC SURVEY MONUMENT 0214, PID THERMOPLASTIC DK3151, DESCRIBED AS BRASS DISK LOCATED IN THE CONCRETE 14. TRAFFIC SIGNS INSTALLED WITHIN THE COUNTY R.O.W. SHALL NOT BASE OF A LIGHT POLE LOCATED 21' SOUTH OF THE CENTERLINE BE INSTALLED WITH A CONCRETE BASE OF 71ST STREET AND 70' WEST OF THE CENTERLINE OF BINDER 5. THERE SHALL BE NO DECORATIVE STONE, LANDSCAPING OR TREES PLANTED WITHIN THE COUNTY R.O.W. ELEVATION=774.53 NAVD 88 16. ALL TRAFFIC SIGNS FACING THE COUNTY HIGHWAY SHALL BE INSTALLED BY THE DUPAGE COUNTY. SOURCE BENCHMARK 2: 17. THERMOPLASTIC PAVEMENT MARKING IS REQUIRED WITHIN LIMITS OF DUPAGE COUNTY 2006 GEODETIC SURVEY MONUMENT, PID THE ACCESS DRIVEWAY AND IN THE 63RD ST. COUNTY RIGHT OF MF1251, DESCRIBED AS TOP OF A STEEL ROD LOCATED IN PVC SLEEVE WITH BERNTSEN LID. LOCATED 145' SOUTH OF THE 18. ALL EXISTING SIDEWALK DAMAGED IN THE 63RD ST. COUNTY RIGHT CENTERLINE OF 63RD STREET AND 42' WEST OF CENTERLINE OF OF WAY SHALL BE REPLACED IN LIKE KIND. DUNHAM ROAD. ELEVATION=745.59 NAVD 88 SITE BENCHMARK 1 TAG BOLT OF FIRST FIRE HYDRANT WEST OF WOODWARD AVENUE ON THE SOUTH SIDE OF 63RD STREET. ELEVATION=738.96 NAVD 88 SITE BENCHMARK 2: TAG BOLT OF SECOND HYDRANT WEST OF WOODWARD AVENUE X. PAVEMEN ON THE SOUTH SIDE OF 63RD STREET. MARKINGS TO ELEVATION=744.51 NAVD 88 REMAIN -DETAILS REGARDING 63RD STREET RESURFACING AND TURN-LANE IMPROVEMENTS ARE BEING COORDINATED WITH THE DUPAGE DIVISION OF TRANSPORTATION AND WILL BE INCLUDED _WITH_FINAL_ENGINEERING ⁻

PAVEMENT MARKING TO BE

WHITE (TYP.)


ACCESS EASEMENT REFER TO PLAT OF SUBDIVISION

LINE (TYP.)

-RELOCATED

∽EXISTING MONUMENT

BUS SIGN

PROPOSED

SHOPPING CENTER 651 SPACES

OVERALL PARKING DATA

WALGREENS

TOTAL

EXISTING

SHOPPING CENTER 774 SPACES

ROUNDHEAD'S PIZZA 21 SPACES

REFLECTIVE

PAVEMENT

MARKERS TBR

25' BUILDING/PARKING SETBACK

LOT 4

0.52 AC

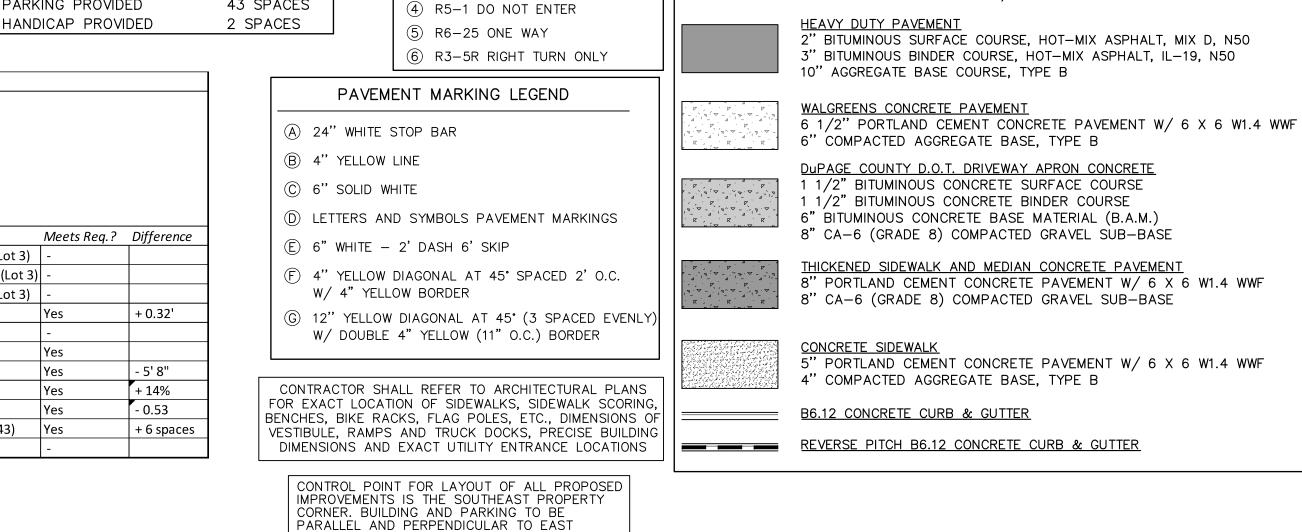
N 87°48'48" E 340.03'

RETAINING WALL-

LOT 3

1.08 AC

LEX. PAVEMENT-


MARKINGS TBR

PROP. 86.18 C&G TO-

MATCH EXISTING

795 SPACES

TOTAL

SIGN LEGEND

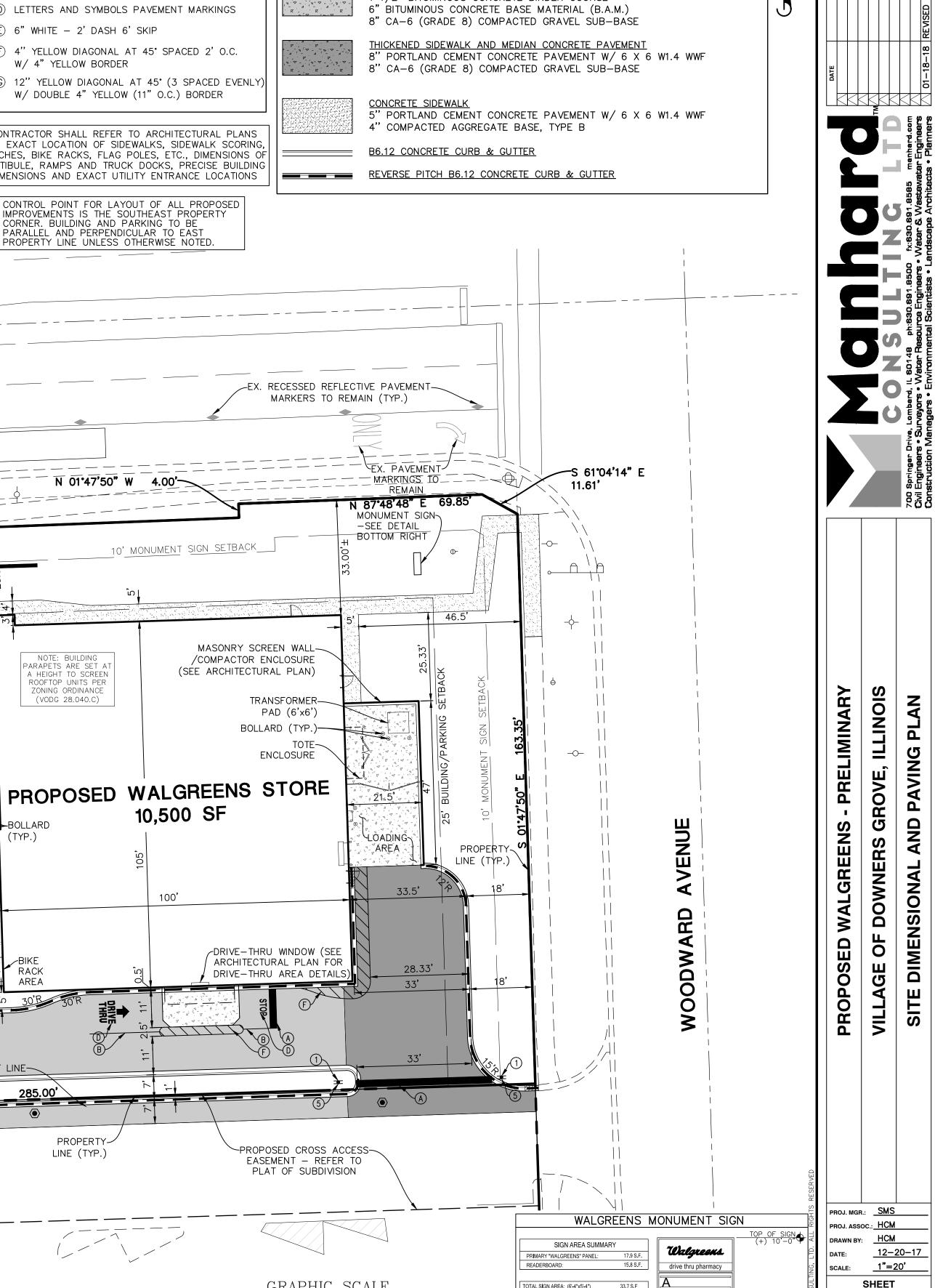
2 R7-8 HANDICAP PARKING SIGN

(3) FIRE LANE - NO PARKING SIGN

(1) R1-1 STOP SIGN

PROPERTY LINE UNLESS OTHERWISE NOTED.

NOTE: BUILDING
PARAPETS ARE SET AT
A HEIGHT TO SCREEN
ROOFTOP UNITS PER
ZONING ORDINANCE


(VODG 28.040.C)

PROPERTY-

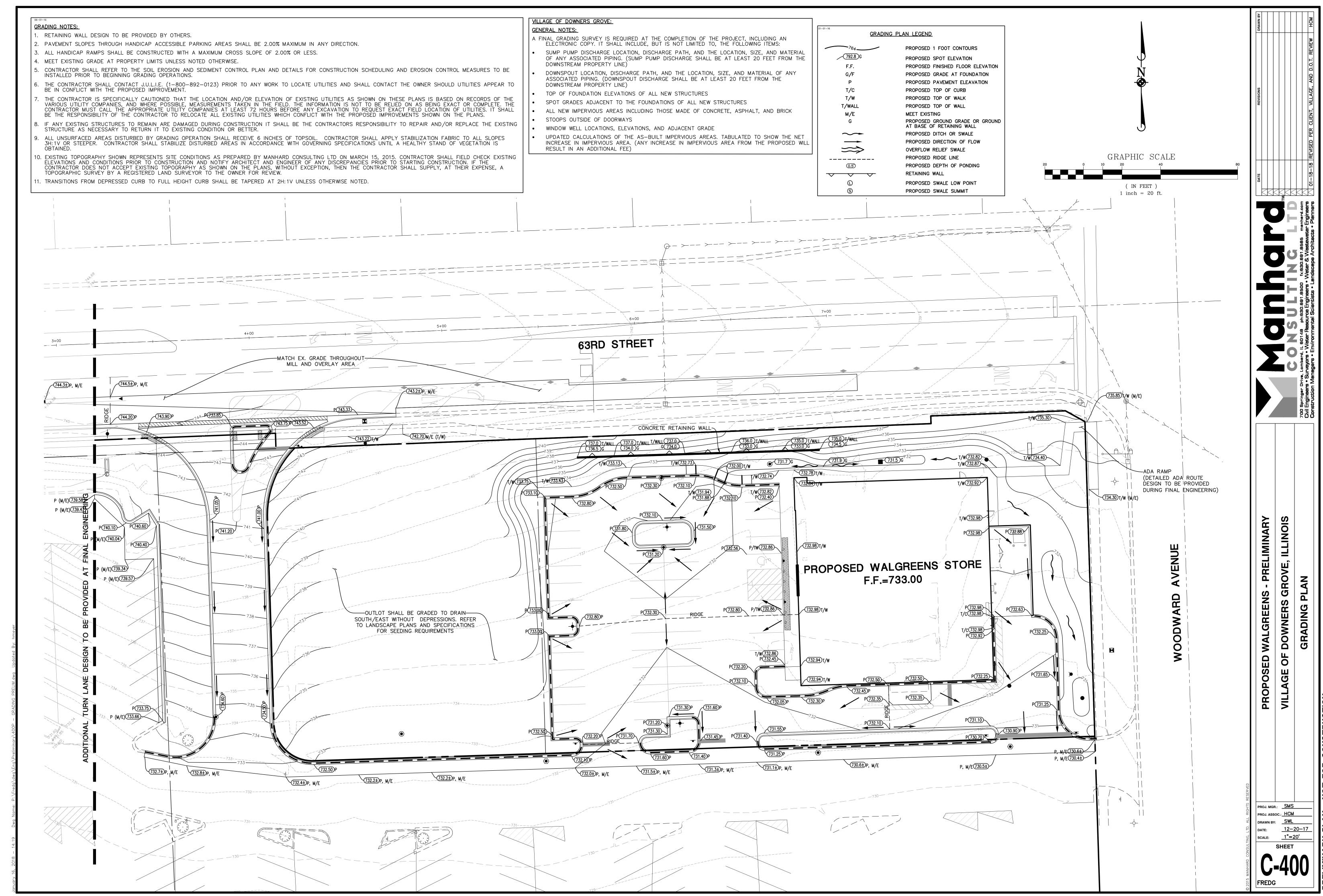
LINE (TYP.)

100'

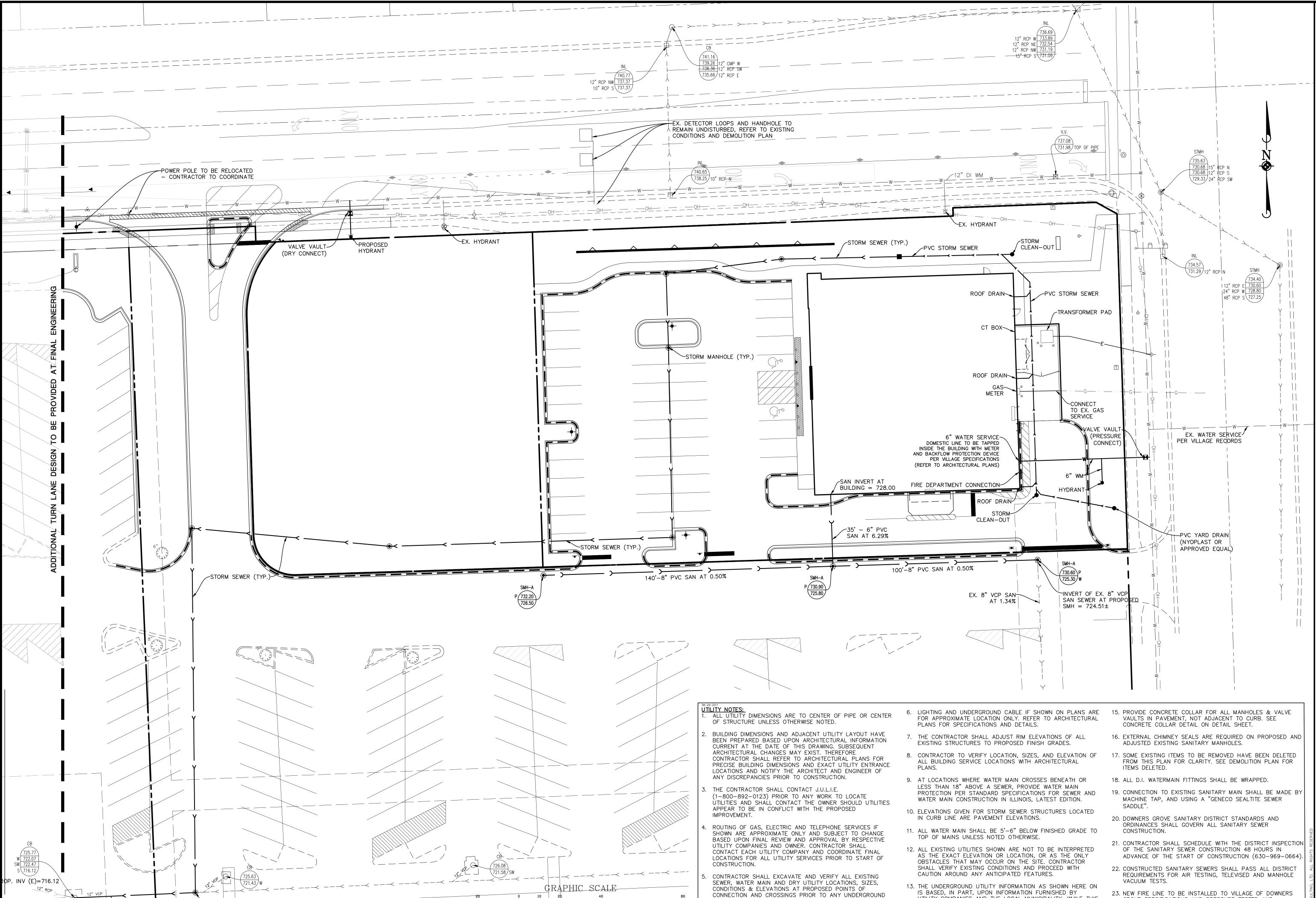
(IN FEET) 1 inch = 20 ft

2001

PAVEMENT LEGEND


1 1/2" BITUMINOUS SURFACE COURSE, HOT-MIX ASPHALT, MIX D, N50

2 1/4" BITUMINOUS BINDER COURSE, HOT-MIX ASPHALT, IL-19, N50


STANDARD DUTY PAVEMENT

8" AGGREGATE BASE COURSE, TYPE B

ORD 2018-7680

ORD 2018-7680

1 inch $\stackrel{\text{def}}{=}$ 20 ft.

-CONSTRUCT STORM MANHOLE OVER

EXISTING VCP STORM SEWER

REPLACE EXISTING 12" VCP

WITH 18" ROP STORM

CONSTRUCTION AND NOTIFY THE OWNER OF ANY

DISCREPANCIES OR CONFLICTS.

GROVE SPECIFICATIONS AND PRESSURE TESTED AND

24. FIRE LINE BACKFLOW DEVICE TO BE INSTALLED TO VILLAGE CODE CHAPTER 25-UTILITIES. REFER TO ARCHITECTURAL PLANS FOR DETAILS

CHLORINATED

UTILITY COMPANIES AND THE LOCAL MUNICIPALITY. WHILE THIS

AND COMPLETENESS CANNOT BE GUARANTEED NOR CERTIFIED.

INFORMATION IS BELIEVED TO BE RELIABLE, ITS ACCURACY

CENTER OF MANHOLE TO CENTER OF MANHOLE OR STORM

14. ALL SANITARY AND STORM SEWER LENGTHS SHOWN ARE

MANHOLE TO FES.

23. NEW FIRE LINE TO BE INSTALLED TO VILLAGE OF DOWNERS

PROJ. MGR.: SMS 12-20-17 <u>1"=20'</u> SHEET

ILLINOIS

GROVE,

DOWNERS

OF

AGE

VILL

WALGREENS

ED

Page 27 of 89

Key	Quantity	Common Name	Botanical Name	Size	Comments
Canopy	Trees				
ACFR	9	AUTUMN BLAZE MAPLE	Acer freemani	2.5" BB	
GIBI	9	GINKGO (MALE)	Ginkgo biloba 'Autumn Gold'	2.5" BB	
GLTI	7	SKYLINE HONEYLOCUST	Gleditsia tricanthos inermis	2.5" BB	
QURU	9	RED OAK	Quercus rubra	2.5" BB	
Deciduo	us Shrubs		,	1	
COSA	5	ARCTIC SUN DOGWOOD	Cornus sanguinea 'Cato'	36" HT	
HYLL	13	LITTLE LIME HYDRANGEA	Hydrangea 'Little Lime'	36" HT	
ROSK	15	KNOCKOUT SHRUB ROSE	Rosa 'Knockout'	36" HT	
SYMB	15	BLOOMERANG LILAC	Syringa 'Bloomerang Purple Lilac'	36" HT	
Evergree	n Shrubs				
JUCK	29	KALLAY COMPACT JUNIPER	Juniperus chinensis 'Kallay'	36" HT	
Ornamer	ntal Grass	es			
CALK	26	FEATHER REED GRASS	Calamagrostis acutiflora 'Karl Forerster'	#1	
MISP	26	PURPLE MAIDEN GRASS	Miscanthus sinsensis 'Purpurascens'	#1	
PEAH	18	DWARF FOUNTAIN GRASS	Pennisetum alopecuroides 'Hameln'	#1	
Groundc	overs	1			
GERR	24	ROZANNE GERANIUM	Geranium 'Rozanne'	#1	Planted 30" O.C.

Note: 4" of shredded bark mulch in all beds unless otherwise noted

Landscaped Open Space Table

Requirement: 10% of lot to be landscaped open space. At least 50% of the landscaped open space must be located in the street yard.

	<u>Area</u>	<u>%</u>
Lot 3 Impervious Surface	34,882 sf	74%
Lot 3 Landscaped Open Space	12,256 sf	26%
Lot 3 Area	47,138 sf	100%
Lot 3 Street Yard Open Space	10,163 sf	83%
Lot 3 Non- Street Yard Open Space	2,093 sf	17%
Lot 3 Landscaped Open Space	17,471 sf	100%

LEGEND

.plp Parking Lot Perimeter .pli Parking Lot Islands .si Signage Landscaping .scr Screening Landscaping

Village of Downers Grove Required Landscaping

PARKING LOT PERIMETER (.plp)

Requirement: When a parking lot is located across the street from a residential zoning district, parking lot perimeter landscaping must be provided along 100% of the street frontage. When across from a nonresidential zoning district, landscaping must be provided along at least 75% of the parking lot perimeter. Shade trees to be provided at a rate of at least one tree per 30 lf of street frontage. Parkway trees may be counted.

63rd Street: 235 LF @100% landscaping and 8 trees (incl. bldg)

East & West Sides: 139 LF (Each side) @ 50% landscaping and 5

On Plan - 18 canopy trees total (plus 4 additional at entrance) 63rd Street = 100% screening E & W Sides = 50% screening

PARKING LOT ISLANDS (.pli)

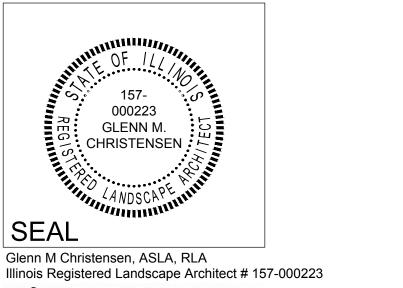
At least one shade tree must be provided for each 150 sf of landscape island. Islands must be located at the end of each parking row and between every 20 spaces.

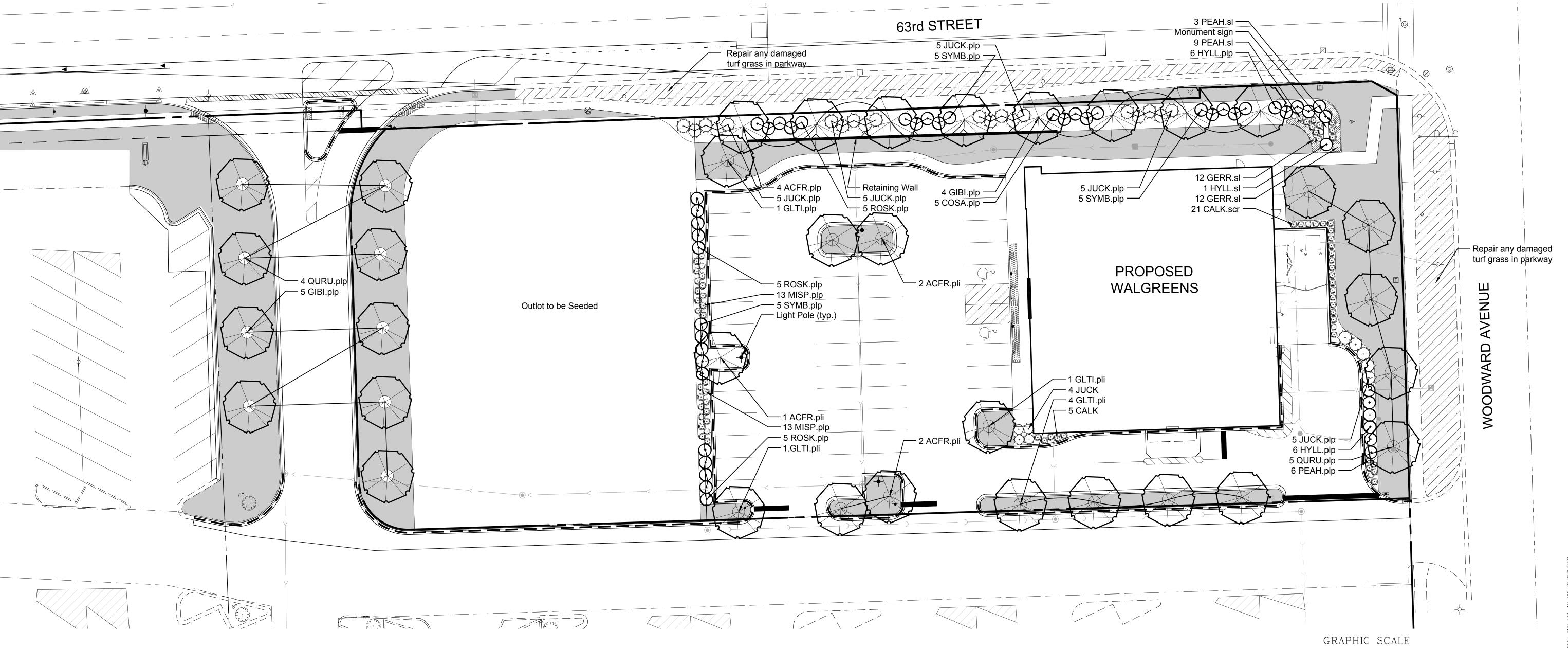
At least 50% of every landscape island and landscape divider median must be planted with live plant material, such as perennials, ground cover, shrubs, or turf grass to a maximum height of 30 inches at maturity.

Required - 11 shade trees in islands, 50% coverage with live plant material (1650 sf of islands)

On Plan - 11 shade trees in islands, more than 50% coverage with live plant material

SIGNAGE LANDSCAPING


The base of all monument signs must be landscaped. Signs must be surrounded by a landscaped area of at least 3 ft.in width.


On Plan - Meets ordinance

SCREENING LANDSCAPING

Screening of refuse areas must be screened with a wall or other screening material providing at least 80% direct visual screening at least 6' in height.

On Plan - Screening wall and landscaping; meets ordinance

(IN FEET) 1 inch = 20 ft

PRELIMINARY ILLINOIS

VILLAGE OF DOWNERS GROVE, PROPOSED WALGREENS

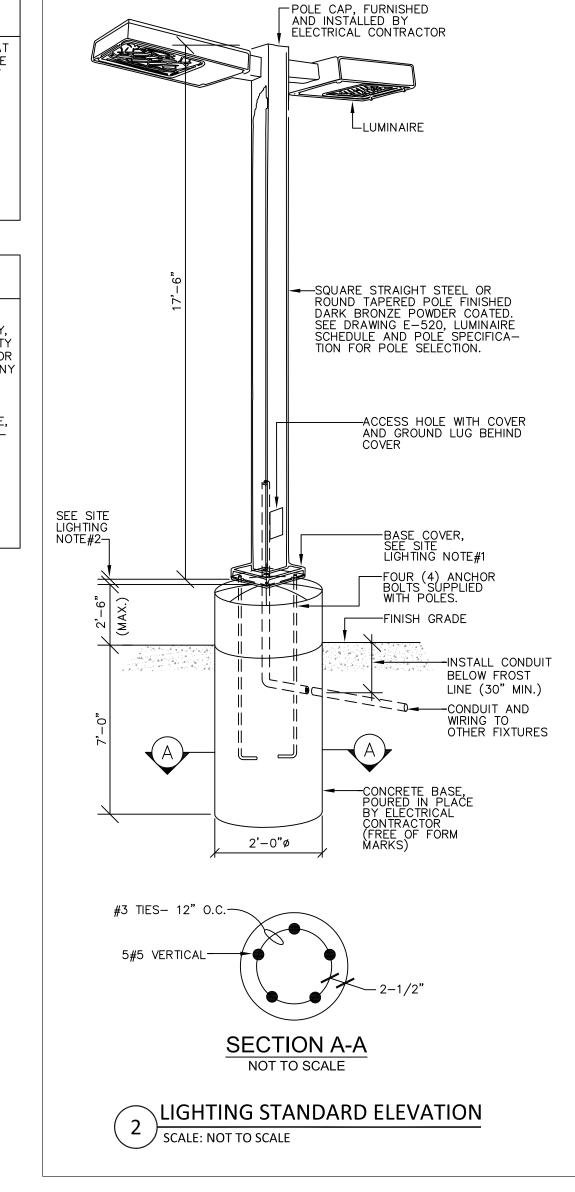
PROJ. MGR.: SMS

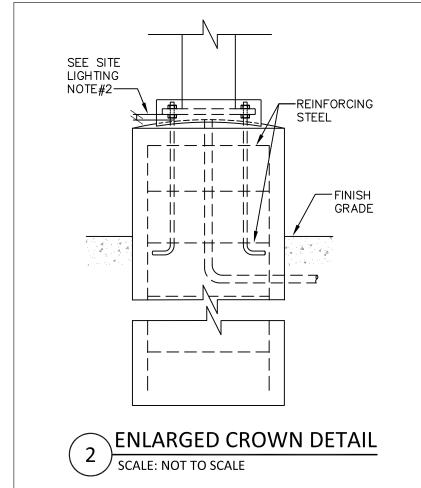
1"=20'

ORD 2018-7680

schedule											
Symbol	Label	Quantity	Manufacturer	Catalog Number	Description	Lamp	Number Lamps	Filename	Lumens Per Lamp	Light Loss Factor	Wattage
	Α	1	Lithonia Lighting	DSX1 LED P2 40K BLC MVOLT	DSX1 LED P2 40K BLC MVOLT	LED	1	DSX1_LED_P2_40K_B LC_MVOLT.ies	7293	0.95	70
	В	1	Lithonia Lighting	DSX1 LED P2 40K T4M MVOLT	DSX1 LED P2 40K T4M MVOLT	LED	1	DSX1_LED_P2_40K_T 4M_MVOLT.ies	8707	0.95	70
	С	1	Lithonia Lighting	DSX1 LED P2 40K T1S MVOLT HS	DSX1 LED P2 40K T1S MVOLT with houseside shield	LED	1	DSX1_LED_P2_40K_T 1S_MVOLT_HS.ies	7663	0.95	140
	D	5	Lithonia Lighting	DSXW1 LED 10C 350 40K ASYDF MVOLT	DSXW1 LED WITH (1) 10 LED LIGHT ENGINES, TYPE ASYDF OPTIC, 4000K, @ 350mA.	LED	1	DSXW1_LED_10C_35 0_40K_ASYDF_MVOLT .ies	1354	0.95	13.3

Statistics						
Description	Symbol	Avg	Max	Min	Max/Min	Avg/Min
Calc Zone Entire Area	+	0.0 fc	1.1 fc	0.0 fc	N/A	N/A
Calc Zone Parking Area only	Ж	1.7 fc	5.8 fc	0.1 fc	58.0:1	17.0:1
Calc Zone Property Line		0.0 fc	0.1 fc	0.0 fc	N/A	N/A


		Loca	tion		Aim				
No.	Label	Х	Υ	МН	Orientation	Tilt	Х	Y	Z
1	Α	338.20	129.80	20.00	0.00	0.00	338.20	130.99	0.00
1	В	287.30	184.00	20.00	90.00	0.00	288.45	184.00	0.00
1	С	334.20	229.70	20.00	180.00	0.00			
1	D	503.50	236.40	20.00	90.00	0.00	503.50	236.40	0.00
2	D	503.50	197.60	20.00	90.00	0.00	503.50	197.60	0.00
3	D	503.10	160.40	20.00	90.00	0.00	503.10	160.40	0.00
4	D	406.70	143.80	20.00	180.00	0.00	406.70	143.80	0.00
5	D	490.00	143.90	20.00	180.00	0.00	490.00	143.90	0.00


PHOTOMETRIC NOTE

- 1. READINGS SHOWN ARE BASED ON A TOTAL LLF AS SHOWN AT GRADE. DATA REFERENCES THE EXTRAPOLATED PERFORMANCE PROJECTIONS IN A 25C AMBIENT BASED ON 10,000 HRRS OF LED TESTING (PER IESNA LM-80-08 AND PROJECTED PER IESNA TM-21-11)
- PLEASE REFER TO THE "LUMINAIRE LOCATIONS" TABLE FOR MOUNTING HIEGHTS.
- PRODUCT INFORMATION CAN BE OBTAINED AT WWW.LITHONIA.COM OR THROUGH YOUR LOCAL AGENCY.
- CALCULATIONS INCLUDE THE 3.5' RETAINING WALL.

DISCLAIMER

THIS LIGHTING DESIGN IS NOT A PROFESSIONAL ENGINEERING DRAWING AND IS PROVIDED FOR INFORMATIO9NAL PURPOSES ONLY, WITHOUT WARRANTY AS TO ACCURACY, COMPLETENESS, RELIABILITY OR OTHERWISE. ACUITY BRANDS LIGHTING IS NOT RESPONSIBLE FOR SPECIFYING THE LIGHTING OR ILLUMINATION REQUIREMENTS FOR ANY ANY SPECIFIC PROJECT. IT IS THE OBLIGATION OF THE END-USER TO CONSULT WITH A PROFESSIONAL ENGINEERING ADVISOR TO DETERMINE WHETHER THIS LIGHTING DESIGN MEETS THE APPLICA-BLE PROJECT REQUIREMENTS FOR LIGHTING SYSTEM PERFORMANCE, SAFETY, SUITABILITY AND EFFECTIVENESS FOR USE IN A PARTICU-LAR APPLICATION. END-USER ENVIRONMENT AND APPLICATION (INCLUDING, BUT NOT LIMITED TO, VOLTAGE VARIATION AND DIRT ACCUMULATION) CAN CAUSE ACTUAL FIELD PERFORMANCE TO DIFFER FROM THE CALCULATED PHOTOMETRIC PERFORMANCE RE-PRESENTED IN THIS LIGHTING DESIGN. IN NO EVENT WILL ACUITY BRANDS LIGHTING BE RESPONSIBLE FOR ANY LOSS RESULTING FROM ANY USE OF THIS LIGHTING DESIGN.

SITE LIGHTING INSTALLATION INSTRUCTIONS (A2, B & B2)

- LOCATE LUMINAIRE ON THE DRAWING; AND VERIFY LUMINAIRE CATALOG NUMBER AND DIRECTION OF ARROW.
- 2. PRIOR TO LUMINAIRE INSTALLATION, VERIFY THAT THE LUMINAIRE CATALOG NUMBER MATCHES THE CATALOG NUMBER SHOWN ON THE DRAWING.

NOTES

- 1. PROVIDE CROWN ON TOP OF CONCRETE BASE TO COMPLETELY SHED WATER.
- 2. 1/2" (MIN) AIR-GAP SPACE BETWEEN TOP OF CONCRETE CROWN AND BOTTOM OF POLE BASE PLATE FOR VENTILATION.
- 3. THE POLE FOUNDATION DIMENSIONS SHOWN HEREON SIMPLY REPRESENT THE MINIMUM ACCEPTABLE DIMENSIONS; ACTUAL DIMENSIONS FOR EACH SITE SHALL BE SPECIFIED BY THE ENGINEER OF RECORD. THE POLE FOUNDATION SHALL BE DESIGNED BY A PROFESSIONAL ENGINEER WITH EXPERIENCE IN LIGHT POLE BASE DESIGN AND WIND LOADS. SITE SPECIFIC SOIL PARAMETERS FROM THE GEOTECHNICAL REPORT SHALL BE USED AS INPUTS TO THE DESIGN.

245.4 E. DEMPSTER
TEL (847) 298-1525
www.camburasa

ERS GROVE, ILLINOIS
CALCULATIONS & DETAILS

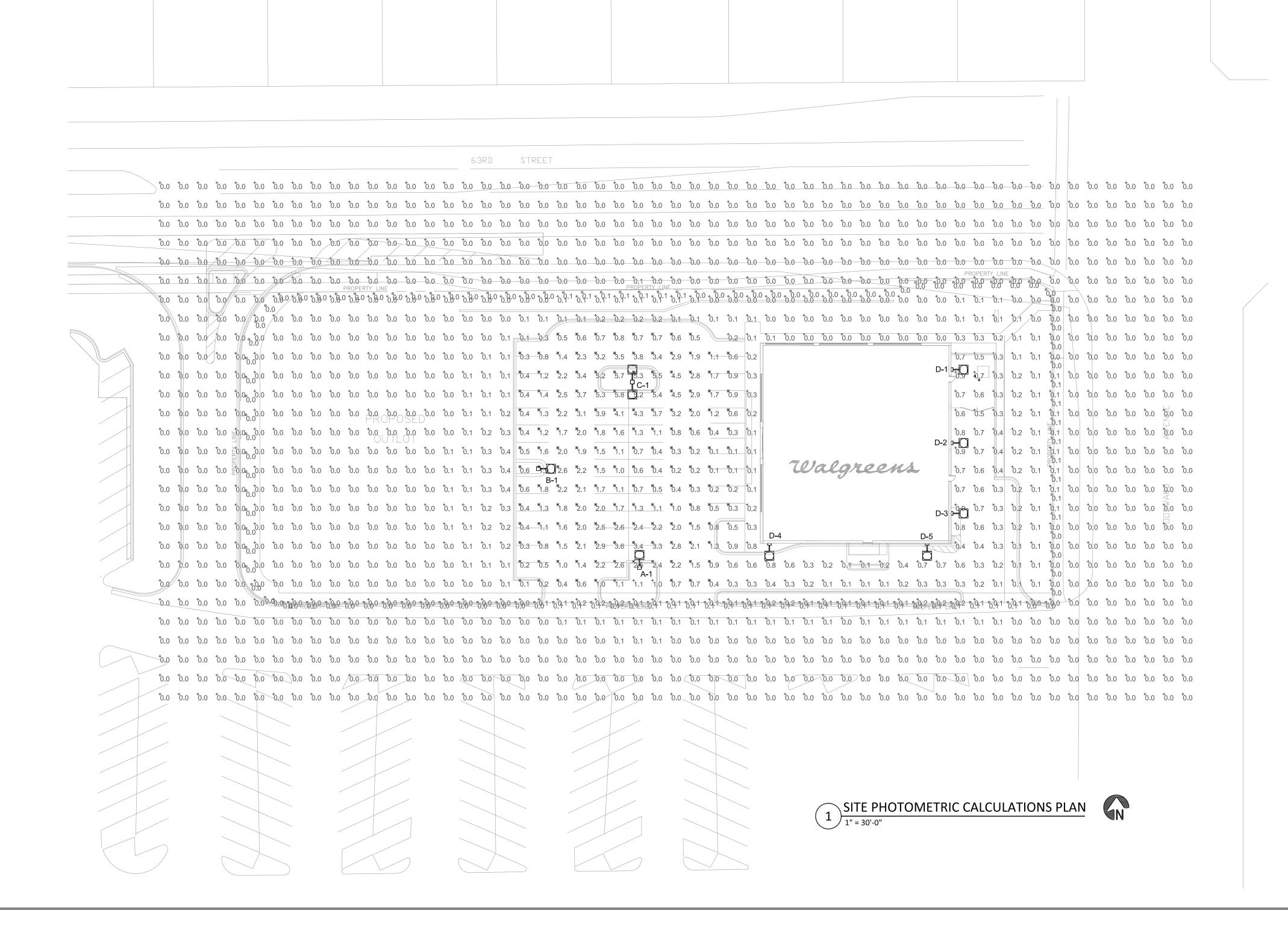
AVENUE

63RD STREET AND WOODWARD
VILLAGE OF DOWNERS GROVE,

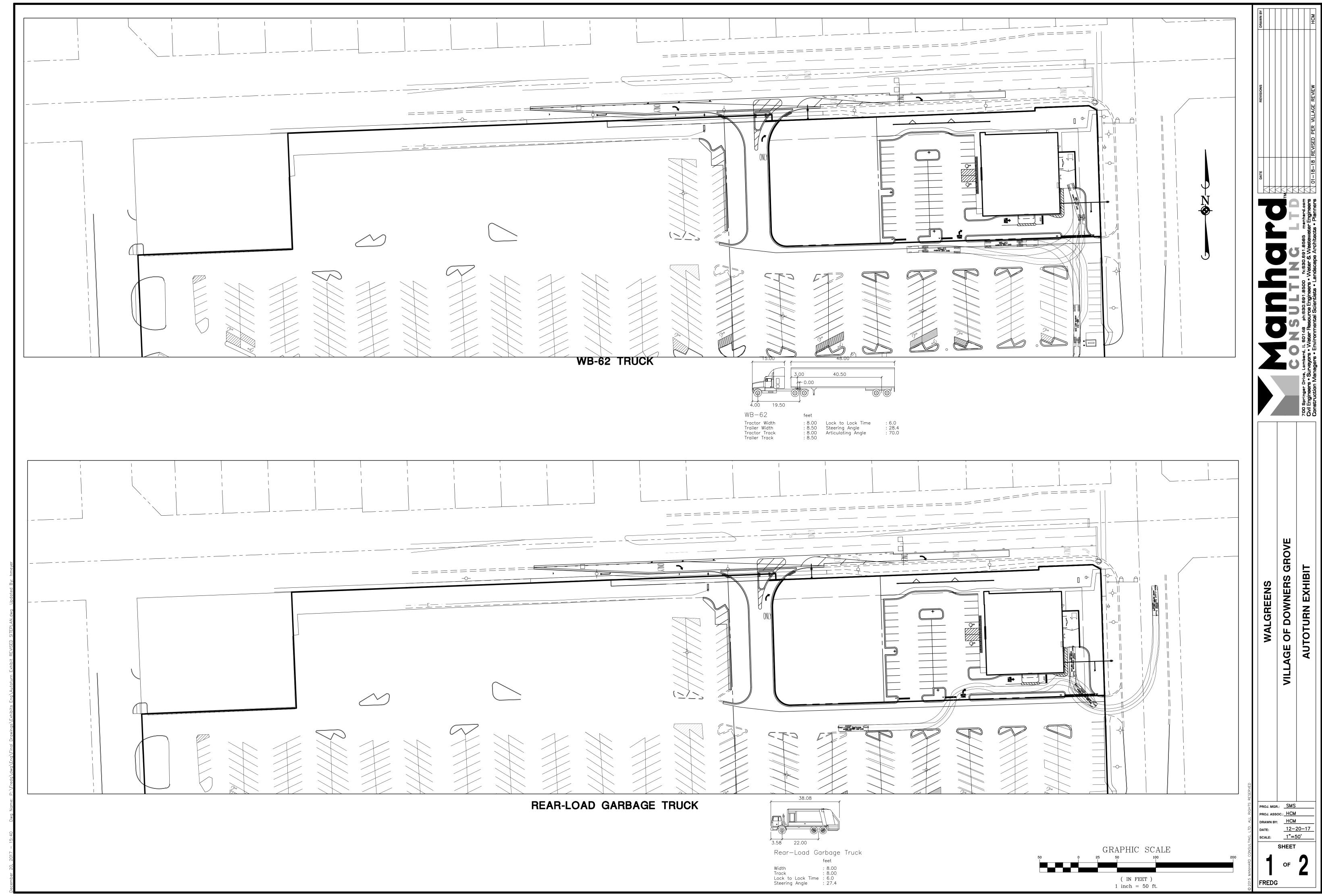
PROJ. MGR.:

PROJ. ASSOC.:

DRAWN BY:

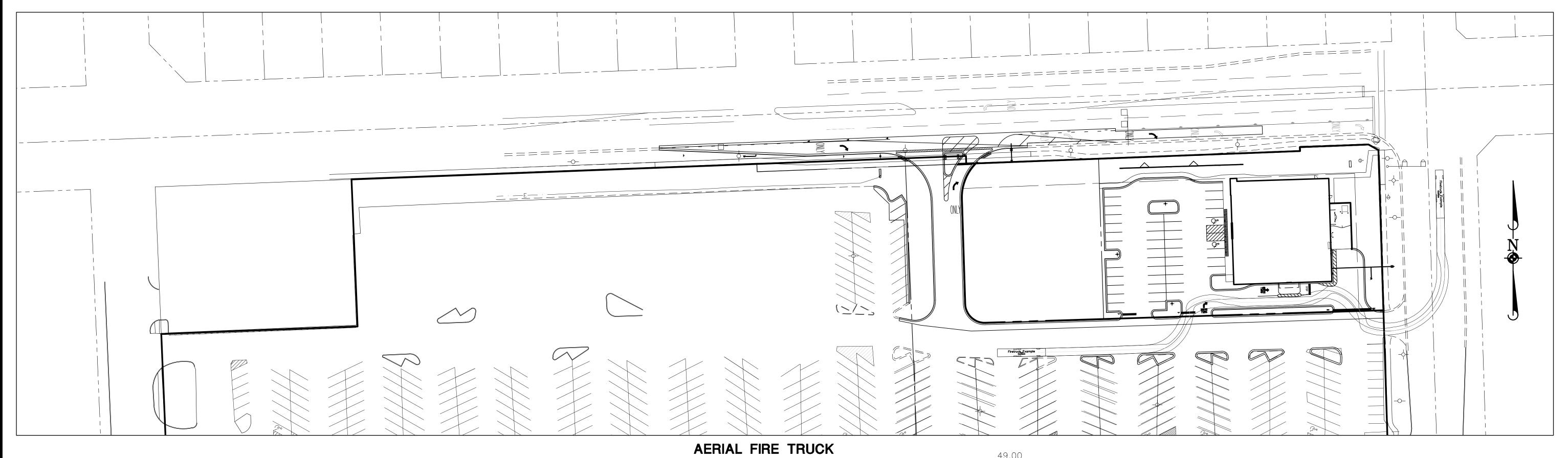

AB

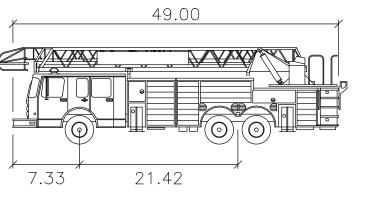
DATE:


12-20-17

DATE: 12-20-17
SCALE: AS NOTED
SHEET

E-101




ORD 2018-7680 Page 29 of 89

ORD 2018-7680

Page 30 of 89

Firetruck Examplet

Width : 8.00

Track : 8.00

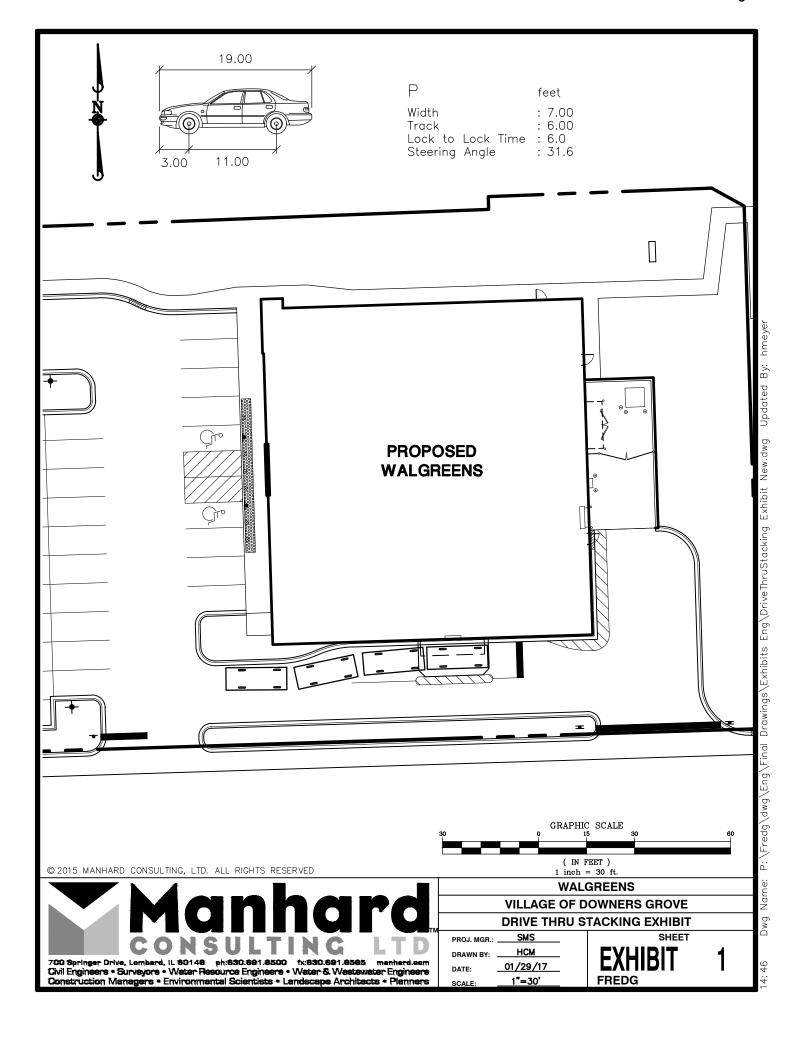
Lock to Lock Time : 6.0

Steering Angle : 32.6

GRAPHIC SCALE

50
0 25 50 100 200

(IN FEET)
1 inch = 50 ft.


PROJ. MGR.: TP
PROJ. ASSOC.: SWL
DRAWN BY: HCM
DATE: 12-20-17
SCALE: 1"=50'
SHEET

200
FREDG

VILLAGE OF DOWNERS GROVE AUTOTURN EXHIBIT

WALGREENS

ORD 2018-7680 Page 31 of 89

9575 West Higgins Road, Suite 400 | Rosemont, Illinois 60018 p: 847-518-9990 | f: 847-518-9987

MEMORANDUM TO: Mitchell P Kahn

Frontline Real Estate Partners, LLC

FROM: Javier Millan

Senior Consultant

Luay Aboona, PE

Principal

DATE: December 15, 2017

SUBJECT: Trip Generation Comparison

Revised Walgreens Development Plan

Downers Grove, Illinois

This memorandum provides a comparison of the estimated traffic to be generated by the (1) approved plan and (2) current proposed plan for the Walgreens Drive-Through Pharmacy store to be located in the southwest corner of the intersection of 63rd Street with Woodward Avenue within the Meadowbrook shopping center in Downers Grove, Illinois. The approved development plan included an approximate 14,500 square-foot Walgreens pharmacy with drive-through facility. As currently proposed, the development plan calls for a smaller Walgreens of approximately 10,500 square feet to be located on the east end of the parcel. The west end of the parcel will be developed by others at a later time. Access to the Walgreens pharmacy will continue to be provided via the existing access drives serving the Meadowbrook shopping center.

The number of peak hour vehicle trips estimated to be generated by the approved development plan and the current proposed development plan were based on trip data for land use code 881 (Pharmacy/Drugstore w/Drive-Through) published by the Institute of Transportation Engineers (ITE) in its *Trip Generation Manual*, 9th Edition. **Table 1** shows the traffic estimated to be generated by the approved development plan and the current proposed development plan. With the reduction in size, it can be seen that the current proposed development plan is estimated to generate less traffic than the approved development plan. As such, the findings and conclusions of the original traffic impact evaluation dated February 2, 2017 remain.

ORD 2018-7680 Page 33 of 89

Table 2
EXISTING AND ESTIMATED TRAFFIC VOLUMES – PROPOSED WALGREENS

Land Use	,	Weekday Morning Peak Hour				Weekday Evening Peak Hour			ırday M Peak Ho	Daily Two-Way Traffic	
Code		In	Out	Total	In	Out	Total	In	Out	Total	Total
Approved Development Plan											
881	Pharmacy/Drugstore w/ Drive-Through (14,500 s.f.)	26	24	50	72	72	144	59	61	120	1,406
	Pass-By Trip Reduction (50%):	<u>-13</u>	<u>-12</u>	<u>-25</u>	<u>-36</u>	<u>-36</u>	<u>-72</u>	<u>-30</u>	<u>-30</u>	<u>-60</u>	<u>-702</u>
Total	New Trips Generated:	13	12	25	36	36	72	29	31	60	704
Current Proposed Development Plan											
881	Pharmacy/Drugstore w/ Drive-Through (10,500 s.f.)	19	17	36	52	52	104	42	44	86	1,018
	Pass-By Trip Reduction (50%):	<u>-10</u>	<u>-8</u>	<u>-18</u>	<u>-26</u>	<u>-26</u>	<u>-52</u>	<u>-21</u>	<u>-22</u>	<u>-43</u>	<u>-509</u>
Total	New Trips Generated:	9	9	18	26	26	52	21	22	43	509
	Difference	-4	-3	-7	-10	-10	-20	-8	-9	-17	-195

9575 West Higgins Road, Suite 400 | Rosemont, Illinois 60018 p: 847-518-9990 | f: 847-518-9987

MEMORANDUM TO: Mitchell P. Kahn

Frontline Real Estate Partners, LLC

FROM: Javier Milan

Senior Consultant

Luay R. Aboona, PE

Principal

DATE: February 2, 2017

SUBJECT: Traffic Impact Evaluation

Proposed Walgreens Drive-Through Pharmacy Store

Downers Grove, Illinois

This memorandum summarizes the results of a traffic impact evaluation conducted by Kenig, Lindgren, O'Hara, Aboona, Inc. (KLOA, Inc.) for the proposed Walgreens Drive-Through Pharmacy Store in Downers Grove, Illinois. The plans call for relocating the existing Walgreens store in the northwest corner of the intersection of 63rd Street with Belmont Avenue to the southwest corner of the intersection of 63rd Street with Woodward Avenue. The proposed location, which is currently occupied by Roundhead's Pizza Pub, is located within the Meadowbrook shopping center. **Figure 1** shows an aerial view of the site area.

The purpose of this evaluation is to address concerns raised regarding existing traffic operations at the intersection of 63rd Street with Woodward Avenue, which include the following:

- Queueing and delays experienced by traffic on Woodward Avenue
- The impact of the additional traffic that the proposed Walgreens development will generate
- The projected increase in traffic on Woodward Avenue north of 63rd Street

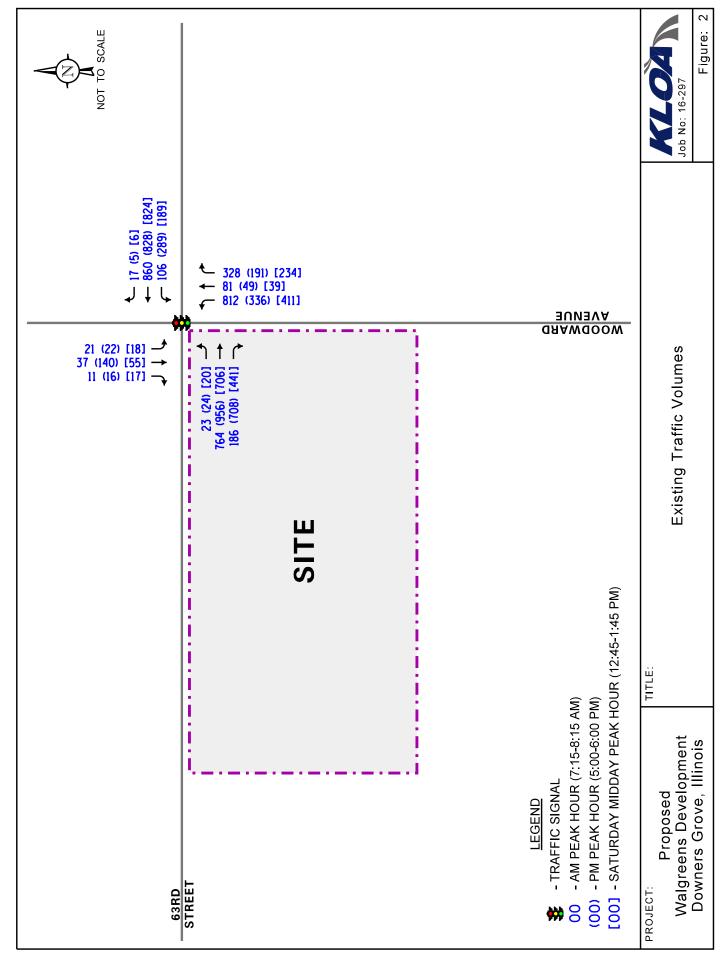
ORD 2018-7680 Page 35 of 89

Aerial View of Site Location Figure 1

ORD 2018-7680 Page 36 of 89

Existing Roadways

The existing roadways and traffic control characteristics of the adjacent roadways are described below.


63rd Street (DuPage County Route 38) is an east-west roadway with a five-lane cross section that in the vicinity of the site provides two lanes in each direction divided by a striped median. At its signalized intersection with Woodward Avenue, 63rd Street provides an exclusive left-turn lane, two exclusive through lanes, and an exclusive right-turn lane on the eastbound approach and an exclusive left-turn lane, an exclusive through lane, and a shared through/right-turn lane on the westbound approach. Standard style crosswalks are provided on all legs of the intersection along with pedestrian signals. 63rd Street is under the jurisdiction of the DuPage County Division of Transportation (DuDOT) and has a posted speed limit of 40 miles per hour (mph).

Woodward Avenue is a north-south roadway that provides one lane in each direction north of 63rd Street and two lanes in each direction south of 63rd Street. At its signalized intersection with 63rd Street, Woodward Avenue provides a shared left-turn/through lane and a shared through/right-turn lane on the southbound approach and an exclusive left-turn lane, a shared left-turn/through lane, and an exclusive right-turn lane on the northbound approach. Woodward Avenue is under the jurisdiction of Lisle Township and Downers Grove Township north of 63rd street and the Village of Downers Grove south of 63rd Street. Woodward Avenue has a posted speed limit of 25 mph north of 63rd Street increasing to 30 mph south of 63rd Street. Through traffic and trucks over eight tons are prohibited on Woodward Avenue via signage north of 63rd Street.

Existing Traffic Volumes

In order to determine current traffic conditions at the intersection of 63rd Street with Woodward Avenue, KLOA, Inc. conducted peak period traffic counts on Saturday, January 21, 2017 and on Tuesday, January 24, 2017 during the weekday morning (7:00 A.M. to 9:00 A.M.) and weekday evening (2:30 P.M. to 6:00 P.M.) peak periods and on Saturday January 21, 2017 during the midday (12:00 P.M. to 2:00 P.M.) peak period. The results of the traffic counts showed that the weekday morning peak hour of traffic occurs from 7:15 A.M. to 8:15 A.M., the weekday evening peak hour of traffic occurs from 4:00 P.M. to 5:00 P.M., and the Saturday midday peak hour of traffic occurs from 12:45 P.M. to 1:45 P.M. **Figure 2** illustrates the existing peak hour traffic volumes. Summaries of the traffic counts can be found in the Appendix.

In addition, the results of the traffic counts were compared with counts previously conducted by DuDOT in 2014 and were found to be generally consistent. It should also be noted that the traffic counts were conducted while the nearby Indian Trail Elementary School was in session and school-related traffic was included in the traffic counts. A review of the traffic counts showed that approximately 30 percent more traffic traveled through the intersection of 63rd Street with Woodward Avenue during the evening peak hour (5:00 P.M. to 6:00 P.M.) than during the afternoon peak hour (2:30 P.M. to 3:30 P.M.) when the school ends. As such, the higher evening traffic volumes were utilized in the evaluation.

ORD 2018-7680 Page 38 of 89

Traffic Operations of the 63rd Street/Woodward Avenue Intersection

The intersection of 63rd Street with Woodward Avenue is under traffic signal control with split phasing for the northbound and southbound approaches. This intersection is part of a coordinated system on 63rd Street that extends from Main Street to the east to Leonard Avenue to the west. The intersection of 63rd Street with Woodward Avenue is fully actuated on all approaches and provides protected/permissive left-turn phases on the eastbound and westbound approaches and right-turn overlap phases on the eastbound and northbound approaches. A sign facing southbound on Woodward Avenue north of 63rd Street prohibits non-local traffic on Woodward Avenue. However, no such signs are provided on Woodward Avenue at its intersection with Maple Avenue or on 61st Street or 59th Street at their respective intersections with Belmont Avenue. As such, cutthrough traffic is only prohibited from traveling northbound on Woodward Avenue, not southbound.

Capacity analyses were conducted at the intersection under existing conditions utilizing the existing signal timings and phasing. The results of the capacity analyses expressed in terms of Level of Service (LOS) and average delays are summarized in **Table 1**. As can be seen, the intersection overall operates at an acceptable LOS C during all three peak hours. However, the northbound and southbound approaches operate at LOS D/E which is primarily due to the limited green time allocated to these approaches, the split phase, and the high volume of traffic on northbound Woodward Avenue.

The results of the capacity analyses were also confirmed by the following observations that were made of existing conditions:

Morning Peak Hour

- Traffic queues on northbound Woodward Avenue were consistently observed to extend between Hastings Avenue and Loomes Avenue for approximately 30 to 60 seconds; however, the queues cleared the intersection most of the time with each green phase.
- Traffic queues on southbound Woodward Avenue were observed to consist of a maximum of four to eight vehicles each cycle and cleared the intersection with each green phase.

Evening Peak Hour

- Traffic queues on southbound Woodward Avenue were observed to consistently extend past the shared left-turn/through lane storage length and taper with combined lane queues of approximately 10 to 16 vehicles per cycle.
- O A significant portion of traffic traveling on Woodward Avenue north of 63rd Street during the peak hours was observed to be cut-through traffic traveling to/from Belmont Avenue to the west and Maple Avenue from the north.

- O Based on the previous observation, the sign prohibiting non-local traffic on northbound Woodward Avenue north of 63rd Street is not being adhered to.
- O Additional signage prohibiting cut-through traffic needs to be posted at 59th Street, 61st Street, and Maple Avenue.

The following is a summary of the reasons for the long delays and queues experienced at this intersection:

- The north-south split phasing nature of the intersection is the primary cause for the intersection's poor level of service, extensive queueing, and significant delay.
 - O The split phasing at this intersection is required because of the striping on the south leg to accommodate the high volume of northbound left-turn movements and the limitation of sufficient right-of-way to geometrically improve the intersection to accommodate the existing traffic volumes without split phasing.
 - The northbound and southbound phases are allocated a proportionate amount of green time based on their respective traffic volumes which results in a minimal amount of green time for the southbound phase (approximately 8, 15, and 13 seconds during the weekday morning, weekday evening, and Saturday midday peak hours, respectively), thus resulting in the delays on the approach.
- The cause for the high volume of northbound left-turn movements on Woodward Avenue and the high volume of eastbound right-turn movements on 63rd Street is the result of how the area roadways are configured.
 - As previously mentioned, Woodward Avenue north of 63rd Street is restricted to local traffic only and does not allow vehicles over eight tons.
 - O Vehicles traveling on Woodward Avenue that desire to continue to travel northbound must turn left onto westbound 63rd Street and then turn right onto northbound Belmont Street approximately one-quarter mile to the west of Woodward Avenue
 - O These two north-south streets act as non-continuous arterial roadways. Instead of being continuous or directly connected, traffic must travel on 63rd Street to continue to travel either north or south via Woodward or Belmont Avenue.

ORD 2018-7680 Page 40 of 89

Table 1 CAPACITY ANALYSIS RESULTS – $63^{\rm RD}$ STREET WITH WOODWARD AVENUE – SIGNALIZED

	Peak Hour	E	astboun	d	W	/estbour	ıd	No	orthbou	nd	So	uthbou	nd	Overall
	Peak Hour	L	Т	R	L	Т	R	L	Т	R	L	Т	R	Overali
S	Weekday Morning	C 22.8	C 23.0	A 6.3	C 21.6	C 22.7	C 23.0	E 60.1	E 59.5	D 37.3	E 62.1		E 61.8	C – 34.4
tion	Peak Hour		B – 19.8			C - 22.7	,		D - 53.8	3		E – 61.9)	
Conditions	Weekday	B 13.8	B 12.9	B 17.0	B 14.7	A 7.4	A 7.5	E 60.7	E 64.6	D 44.5	E 69.3		E 67.0	C 22.4
	Evening Peak Hour		B – 14.6		1117	A - 9.3	7.0		E - 56.7			E - 68.2		C – 22.4
Existing	Saturday Midday	B 14.2	B 13.4	B 10.7	B 13.1	B 11.1	B 11.2	D 47.7	D 47.3	D 37.8	D 51.7		D 51.6	C – 20.6
	Peak Hour		B – 12.4			B – 11.5			D – 44.2	2		D – 51.7	1	20.0

ORD 2018-7680 Page 41 of 89

Development Traffic Generation

The traffic to be generated by the proposed development was estimated using trip data published by the Institute of Transportation Engineers (ITE) in its *Trip Generation Manual*, 9th Edition. The trip rates were applied for the weekday morning and evening peak hours and on a daily basis for a Pharmacy/Drugstore with Drive-Through Window (Land-Use Code 881). In addition, the traffic currently generated by the existing Walgreens was observed and the resulting trip generation was compared with the ITE estimates. **Table 2** shows the trip generation comparison, which indicates that the estimated trips are very similar. It is important to note that surveys conducted by ITE have shown that up to 50 percent of trips made to pharmacy/drugstores with drive-through are diverted from the existing traffic on the roadway system. Such diverted trips are referred to as pass-by traffic. As such, a 50 percent pass-by reduction was applied to the trip generation estimates of the proposed development.

It is also important to note that the proposed Walgreens is a relocation of the existing Walgreens store located approximately one block west of the site. As such, the majority of its traffic is already traversing the intersection of 63rd Street with Woodward Avenue and as a result is not expected to add a significant amount of new traffic to the intersection, with its current operations expected to remain largely unchanged. However, in order to provide a conservative analysis, the traffic that will be generated by the proposed Walgreens was assumed to all be new to the area roadways.

In order to project Year 2018 conditions, existing traffic volumes on 63rd Street and Woodward Avenue were increased by one percent based on projections provided by the Chicago Metropolitan Agency for Planning (CMAP). In addition, traffic to be generated by the proposed development was assigned to the roadways as determined from the traffic counts. The assignment of traffic was determined as follows:

- 40 percent traveling to and from the west on 63rd Street
- 30 percent traveling to and from the east on 63rd Street
- 30 percent traveling to and from the south on Woodward Avenue
- Five percent traveling to and from the north of Woodward Avenue

The Year 2018 projected conditions for the intersection of 63rd Street with Woodward Avenue were analyzed. **Table 3** summarizes the intersection's LOS and delay for Year 2018 projected conditions during the peak hours.

ORD 2018-7680 Page 42 of 89

Table 2 EXISTING AND ESTIMATED TRAFFIC VOLUMES – PROPOSED WALGREENS

Land- Use	_		ekday Mo Peak Ho	U		kday Ev Peak Ho	U		ırday M Peak Ho	•	Daily Two-Way Traffic
Code	Type/Size	In	Out	Total	In	Out	Total	In	Out	Total	Total
Exist	ing Walgreens Traffic	12	7	19	65	77	142	58	59	117	N/A
881	Pharmacy/Drugstore w/ Drive-Through (14,500 s.f.)	26	24	50	72	72	144	59	61	120	1,406
Po	ass-By Trip Reduction (50%):	<u>-13</u>	<u>-12</u>	<u>-25</u>	<u>-36</u>	<u>-36</u>	<u>-72</u>	<u>-30</u>	<u>-30</u>	<u>-60</u>	<u>702</u>
Total N	ew Trips Generated:	13	12	25	36	36	72	29	31	60	704

ORD 2018-7680 Page 43 of 89

Table 3
CAPACITY ANALYSIS RESULTS – 63RD STREET WITH WOODWARD AVENUE – SIGNALIZED

	Deele Heere	E	astboun	d	V	estbour	ıd	No	orthbou	nd	So	outhbou	nd	0
	Peak Hour	L	T	R	L	T	R	L	T	R	L	T	R	Overall
SI	Weekday Morning	C 23.1	C 23.4	A 6.3	C 21.9	C 23.1	C 23.4	E 60.7	E 60.4	D 37.2	E 62.1		E 61.8	C – 34.8
ition	Peak Hour		C - 20.2			C - 23.1			D - 54.3	}		E - 62.0)	
Conditions	Weekday Evening	B 14.1	B 13.4	B 17.4	B 15.4	A 7.7	A 7.8	E 60.4	E 65.0	D 44.1	E 69.2		E 67.0	C-22.7
cted	Peak Hour		B – 15.1			A – 9.7			E – 56.6	-		E - 68.2		22.7
Projected	Saturday Midday	B 14.4	B 13.6	B 10.8	B 13.3	B 11.3	B 11.4	D 47.8	D 47.5	D 37.6	D 51.8		D 51.6	C-20.8
	Peak Hour		B – 12.6			B – 11.7	,		D – 44.2	2		D – 51.7	1	20.0
LOS – I	Level of Service													

Delay is measured in seconds.

ORD 2018-7680 Page 44 of 89

As can be seen, the intersection is expected to continue to operate at an overall LOS C during the weekday morning, weekday evening, and Saturday midday peak hours with an increase in overall delay during each of the peak hours of one second or less. Similarly, the increase in delay of the southbound approach as a result of the increase in traffic will be minimal (less than one second). As such, the proposed development will have a minimal impact on the operation of the intersection.

Potential Intersection and Roadway Improvements

While the proposed relocation of Walgreens will have a negligible impact on the intersection, the following improvements to the intersection and/or roadways could be considered:

- In order to reduce cut through traffic and reduce queues on southbound Woodward Avenue, signs prohibiting non-local traffic should be placed on Woodward Avenue just south of Maple Avenue and on 61st Street and 59th Street just east of Belmont Avenue.
- In order to reduce delays on Woodward Avenue, additional green time could be allocated to the northbound and/or southbound movements.
 - Preliminary analysis showed that providing an additional five seconds of green time for the southbound approach during the evening peak hour would reduce delay for all southbound movements by approximately five to six seconds.
 - O However, this will increase the overall intersection delay by approximately seven seconds during the evening peak hour.
 - O It is important to note that reducing delay for the southbound approach may encourage additional cut-through traffic on Woodward Avenue.
 - O Any change to signal timing will require DuDOT review and may not be approved due to its impact on 63rd Street traffic and the interconnect system.

ORD 2018-7680 Page 45 of 89

Conclusion

Based on the preceding evaluation, the following conclusions are made:

- The proposed Walgreens is a relocation of the existing store located at the northwest corner of the intersection of 63rd Street with Belmont Avenue.
- The signalized intersection of 63rd Street with Woodward Avenue currently operates as a split phase intersection causing queues and delays on both the northbound and southbound approaches.
- Despite these delays, queues were generally observed to clear the intersection with each green phase.
- Cut-through traffic is utilizing Woodward Avenue to travel to/from Belmont Avenue to the west and Maple Avenue from the north.
- The proposed Walgreens will not add a significant amount of new traffic to 63rd Street or Woodward Avenue and, as such, will have a minimal impact on the operations of the intersection of 63rd Street with Woodward Avenue.
- A minimal amount of traffic generated by the proposed development will travel to/from the north on Woodward Avenue.
- Signs prohibiting cut-through traffic should be placed on Woodward Avenue just south of Maple Avenue and on 61st Street and 59th Street just east of Belmont Avenue to reduce the traffic volumes of Woodward Avenue north of 63rd Street.
- Traffic delays on the southbound approach of Woodward Avenue may be reduced by allocating additional green time which may cause increases in overall intersection delays. Such modifications would be subject to DuDOT review.

ORD 2018-7680 Page 46 of 89

Appendix

Traffic Count Summary Sheets Level of Service Criteria Capacity Analysis Summary Sheets ORD 2018-7680 Page 47 of 89

Traffic Count Summary Sheets

Kenig Lindgren O'Hara Aboona, Inc. 9575 W. Higgins Rd., Suite 400

Rosemont, Illinois, United States 60018 (847)518-9990

Count Name: 63rd Street with Woodward Avenue Site Code: Start Date: 01/21/2017 Page No: 1

Turning Movement Data

				Street						Street bound	9					rd Avenue bound						rd Avenue abound			
Start Time	U-Turn	Left	Thru	Right	Peds	App. Total	U-Turn	Left	Thru	Right	Peds	App. Total	U-Turn	Left	Thru	Right	Peds	App. Total	U-Turn	Left	Thru	Right	Peds	App. Total	Int. Total
12:00 PM	0	1	161	120	0	282	0	50	175	2	0	227	0	89	9	65	0	163	0	1	22	3	1	26	698
12:15 PM	0	6	169	111	0	286	0	56	192	2	0	250	0	95	13	46	0	154	0	1	20	5	0	26	716
12:30 PM	0	5	197	111	0	313	0	61	170	4	0	235	0	100	11	60	2	171	0	2	18	4	0	24	743
12:45 PM	0	3	159	94	0	256	0	55	205	1	0	261	0	116	12	60	0	188	0	5	20	2	0	27	732
Hourly Total	0	15	686	436	0	1137	0	222	742	9	0	973	0	400	45	231	2	676	0	9	80	14	1	103	2889
1:00 PM	0	8	196	117	0	321	0	42	195	1	0	238	0	85	9	56	0	150	0	5	6	9	0	20	729
1:15 PM	0	2	178	104	0	284	0	46	202	2	0	250	0	102	10	51	1	163	0	4	16	1	0	21	718
1:30 PM	0	7	175	126	0	308	0	46	222	2	0	270	0	108	8	67	1	183	0	4	13	5	0	22	783
1:45 PM	0	1	191	107	1	299	0	47	150	2	0	199	0	98	7	65	0	170	0	3	6	4	0	13	681
Hourly Total	0	18	740	454	1	1212	0	181	769	7	0	957	0	393	34	239	2	666	0	16	41	19	0	76	2911
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7:00 AM	0	1	179	37	0	217	0	16	212	2	0	230	0	194	9	50	0	253	0	0	7	1	0	8	708
7:15 AM	0	3	191	40	0	234	0	15	193	0	0	208	0	218	17	72	0	307	0	3	5	2	0	10	759
7:30 AM	0	7	194	55	0	256	0	26	232	2	0	260	0	213	26	85	0	324	0	3	14	4	0	21	861
7:45 AM	0	9	204	43	0	256	0	43	235	9	0	287	0	212	29	97	0	338	0	9	2	2	0	13	894
Hourly Total	0	20	768	175	0	963	0	100	872	13	0	985	0	837	81	304	0	1222	0	15	28	9	0	52	3222
8:00 AM	0	4	175	48	0	227	0	22	200	6	0	228	0	169	9	74	0	252	0	6	16	3	1	25	732
8:15 AM	0	9	149	51	0	209	0	40	212	1	0	253	0	141	14	53	0	208	0	5	10	4	1	19	689
8:30 AM	0	2	167	41	0	210	0	44	209	3	1	256	0	111	14	46	1	171	0	2	10	4	0	16	653
8:45 AM	0	3	156	54	0	213	0	24	180	0	0	204	0	112	4	35	0	151	0	1	11	2	0	14	582
Hourly Total	0	18	647	194	0	859	0	130	801	10	1	941	0	533	41	208	1	782	0	14	47	13	2	74	2656
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2:30 PM	0	5	149	104	0	258	0	51	167	2	0	220	0	71	9	50	0	130	0	1	11	2	0	14	622
2:45 PM	0	4	164	103	0	271	0	52	138	2	0	192	0	79	21	64	0	164	0	2	11	4	0	17	644
Hourly Total	0	9	313	207	0	529	0	103	305	4	0	412	0	150	30	114	0	294	0	3	22	6	0	31	1266
3:00 PM	0	5	145	112	0	262	0	65	139	7	0	211	0	68	11	40	0	119	0	4	20	4	2	28	620
3:15 PM	0	3	198	109	0	310	0	47	146	5	0	198	0	77	10	43	0	130	0	5	19	0	0	24	662
3:30 PM	0	4	185	129	0	318	0	67	194	4	1	265	0	87	8	68	0	163	0	2	20	1	1	23	769
3:45 PM	0	3	213	144	0	360	0	69	226	1	1	296	0	91	7	49	0	147	0	2	30	4	0	36	839
Hourly Total	0	15	741	494	0	1250	0	248	705	17	2	970	0	323	36	200	0	559	0	13	89	9	3	111	2890
4:00 PM	0	4	223	157	1	384	0	49	239	0	0	288	0	92	5	45	0	142	0	3	23	3	2	29	843
4:15 PM	0	3	234	157	0	394	0	69	157	1	0	227	0	102	6	43	0	151	0	0	26	3	0	29	801
4:30 PM	0	2	242	166	0	410	0	75	218	1	0	294	0	78	11	47	1	136	0	4	36	3	0	43	883
4:45 PM	0	2	220	146	0	368	0	63	211	1	0	275	0	90	10	43	0	143	0	0	16	6	0	22	808
Hourly Total	0	11	919	626	1	1556	0	256	825	3	0	1084	0	362	32	178	1	572	0	7	101	15	2	123	3335
5:00 PM	0	8	228	158	0	394	0	66	226	2	0	294	0	69	12	49	0	130	0	9	29	3	0	41	859
5:15 PM	0	6	238	178	0	422	0	95	197	1	0	293	0	96	13	50	0	159	0	5	42	0	0	47	921

5:30 PM	0	2	251	202	0	455	0	66	202	0	0	268	0	75	11	41	0	127	0	5	39	5	0	49	899
5:45 PM	0	8	239	168	0	415	0	62	203	2	0	267	0	96	13	51	0	160	0	3	30	8	0	41	883
Hourly Total	0	24	956	706	0	1686	0	289	828	5	0	1122	0	336	49	191	0	576	0	22	140	16	0	178	3562
Grand Total	0	130	5770	3292	2	9192	0	1529	5847	68	3	7444	0	3334	348	1665	6	5347	0	99	548	101	8	748	22731
Approach %	0.0	1.4	62.8	35.8	-	-	0.0	20.5	78.5	0.9	_	-	0.0	62.4	6.5	31.1	-	-	0.0	13.2	73.3	13.5	-	-	-
Total %	0.0	0.6	25.4	14.5	-	40.4	0.0	6.7	25.7	0.3	-	32.7	0.0	14.7	1.5	7.3	-	23.5	0.0	0.4	2.4	0.4	-	3.3	-
Lights	0	129	5601	3255	-	8985	0	1494	5682	64	-	7240	0	3292	339	1625	-	5256	0	93	537	97	-	727	22208
% Lights	-	99.2	97.1	98.9	-	97.7	-	97.7	97.2	94.1	_	97.3	-	98.7	97.4	97.6	-	98.3	-	93.9	98.0	96.0	-	97.2	97.7
Buses	0	0	112	27	-	139	0	18	83	2	-	103	0	22	6	35	-	63	0	4	10	2	-	16	321
% Buses	-	0.0	1.9	0.8	-	1.5	-	1.2	1.4	2.9	-	1.4	-	0.7	1.7	2.1	-	1.2	-	4.0	1.8	2.0	-	2.1	1.4
Single-Unit Trucks	0	1	50	9	-	60	0	16	66	2	-	84	0	15	1	5	-	21	0	2	1	1	-	4	169
% Single-Unit Trucks	-	0.8	0.9	0.3	-	0.7	-	1.0	1.1	2.9	-	1.1	-	0.4	0.3	0.3	-	0.4	-	2.0	0.2	1.0	-	0.5	0.7
Articulated Trucks	0	0	7	1	-	8	0	1	16	0	-	17	0	5	0	0	-	5	0	0	0	1	-	1	31
% Articulated Trucks	-	0.0	0.1	0.0	-	0.1	-	0.1	0.3	0.0	-	0.2	-	0.1	0.0	0.0	-	0.1	-	0.0	0.0	1.0	-	0.1	0.1
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	2	0	-	2	0	0	0	0	-	0	2
% Bicycles on Road	-	0.0	0.0	0.0	-	0.0	-	0.0	0.0	0.0	-	0.0	-	0.0	0.6	0.0	-	0.0	-	0.0	0.0	0.0	-	0.0	0.0
Pedestrians	-	-	-	-	2	-	-	-	-	-	3	-	-	-	-	-	6	-	-	-	-	-	8	-	-
% Pedestrians	-	-	-	_	100.0	_	-	_	_	-	100.0	-	-	_	-	_	100.0	_	-	_	_	_	100.0	-	-

ORD 2018-7680 Page 50 of 89

Kenig Lindgren O'Hara Aboona, Inc. 9575 W. Higgins Rd., Suite 400

Rosemont, Illinois, United States 60018 (847)518-9990

Count Name: 63rd Street with Woodward

Avenue
Site Code:
Start Date: 01/21/2017
Page No: 4

Turning Movement Peak Hour Data (12:45 PM)

				Street						Street bound					Woodwar North	d Avenue					Woodwar South				
Start Time	U-Turn	Left	Thru	Right	Peds	App. Total	U-Turn	Left	Thru	Right	Peds	App. Total	U-Turn	Left	Thru	Right	Peds	App. Total	U-Turn	Left	Thru	Right	Peds	App. Total	Int. Total
12:45 PM	0	3	159	94	0	256	0	55	205	1	0	261	0	116	12	60	0	188	0	5	20	2	0	27	732
1:00 PM	0	8	196	117	0	321	0	42	195	1	0	238	0	85	9	56	0	150	0	5	6	9	0	20	729
1:15 PM	0	2	178	104	0	284	0	46	202	2	0	250	0	102	10	51	1	163	0	4	16	1	0	21	718
1:30 PM	0	7	175	126	0	308	0	46	222	2	0	270	0	108	8	67	1	183	0	4	13	5	0	22	783
Total	0	20	708	441	0	1169	0	189	824	6	0	1019	0	411	39	234	2	684	0	18	55	17	0	90	2962
Approach %	0.0	1.7	60.6	37.7	-	-	0.0	18.5	80.9	0.6	-	-	0.0	60.1	5.7	34.2	-	-	0.0	20.0	61.1	18.9	-	-	-
Total %	0.0	0.7	23.9	14.9	-	39.5	0.0	6.4	27.8	0.2	-	34.4	0.0	13.9	1.3	7.9	-	23.1	0.0	0.6	1.9	0.6	-	3.0	-
PHF	0.000	0.625	0.903	0.875	-	0.910	0.000	0.859	0.928	0.750	-	0.944	0.000	0.886	0.813	0.873	_	0.910	0.000	0.900	0.688	0.472	-	0.833	0.946
Lights	0	19	701	439	-	1159	0	188	810	6	-	1004	0	411	38	234	-	683	0	17	55	17	-	89	2935
% Lights	-	95.0	99.0	99.5	-	99.1	-	99.5	98.3	100.0	-	98.5	-	100.0	97.4	100.0	-	99.9	-	94.4	100.0	100.0	-	98.9	99.1
Buses	0	0	4	0	-	4	0	1	8	0	-	9	0	0	0	0	_	0	0	1	0	0	-	1	14
% Buses	-	0.0	0.6	0.0	-	0.3	-	0.5	1.0	0.0	-	0.9	-	0.0	0.0	0.0	-	0.0	-	5.6	0.0	0.0	-	1.1	0.5
Single-Unit Trucks	0	1	3	2	-	6	0	0	5	0	-	5	0	0	0	0	-	0	0	0	0	0	-	0	11
% Single-Unit Trucks	-	5.0	0.4	0.5	-	0.5	-	0.0	0.6	0.0	-	0.5	-	0.0	0.0	0.0	-	0.0	-	0.0	0.0	0.0	-	0.0	0.4
Articulated Trucks	0	0	0	0	-	0	0	0	1	0	-	1	0	0	0	0	-	0	0	0	0	0	-	0	1
% Articulated Trucks	-	0.0	0.0	0.0	-	0.0	-	0.0	0.1	0.0	-	0.1	-	0.0	0.0	0.0	-	0.0	-	0.0	0.0	0.0	-	0.0	0.0
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	1	0	-	1	0	0	0	0	-	0	1
% Bicycles on Road	-	0.0	0.0	0.0	-	0.0	-	0.0	0.0	0.0	-	0.0	-	0.0	2.6	0.0	-	0.1	-	0.0	0.0	0.0	-	0.0	0.0
Pedestrians	-	-	_	-	0		-	-	-		0		-	-	-	-	2	-	-	-		-	0		-
% Pedestrians	-	-	_	_	_	_	-	-	-		-	_	-	-	_	_	100.0	-	-	-	_		-		-

Kenig Lindgren O'Hara Aboona, Inc. 9575 W. Higgins Rd., Suite 400

Rosemont, Illinois, United States 60018 (847)518-9990

Count Name: 63rd Street with Woodward

Avenue
Site Code:
Start Date: 01/21/2017
Page No: 6

Turning Movement Peak Hour Data (7:15 AM)

							1		9			Jan			(1.10	,,			i						1
			63rd	Street					63rd	Street					Woodwa	rd Avenue					Woodwar	d Avenue			
			East	oound					West	bound					North	bound					South	bound			
Start Time	U-Turn	Left	Thru	Right	Peds	App. Total	U-Turn	Left	Thru	Right	Peds	App. Total	U-Turn	Left	Thru	Right	Peds	App. Total	U-Turn	Left	Thru	Right	Peds	App. Total	Int. Total
7:15 AM	0	3	191	40	0	234	0	15	193	0	0	208	0	218	17	72	0	307	0	3	5	2	0	10	759
7:30 AM	0	7	194	55	0	256	0	26	232	2	0	260	0	213	26	85	0	324	0	3	14	4	0	21	861
7:45 AM	0	9	204	43	0	256	0	43	235	9	0	287	0	212	29	97	0	338	0	9	2	2	0	13	894
8:00 AM	0	4	175	48	0	227	0	22	200	6	0	228	0	169	9	74	0	252	0	6	16	3	1	25	732
Total	0	23	764	186	0	973	0	106	860	17	0	983	0	812	81	328	0	1221	0	21	37	11	1	69	3246
Approach %	0.0	2.4	78.5	19.1	-	-	0.0	10.8	87.5	1.7	-	-	0.0	66.5	6.6	26.9	-	-	0.0	30.4	53.6	15.9	-	-	-
Total %	0.0	0.7	23.5	5.7	-	30.0	0.0	3.3	26.5	0.5	-	30.3	0.0	25.0	2.5	10.1	-	37.6	0.0	0.6	1.1	0.3	-	2.1	-
PHF	0.000	0.639	0.936	0.845	-	0.950	0.000	0.616	0.915	0.472	-	0.856	0.000	0.931	0.698	0.845	-	0.903	0.000	0.583	0.578	0.688	-	0.690	0.908
Lights	0	23	734	176	-	933	0	104	826	16	-	946	0	798	77	315	-	1190	0	20	37	11	-	68	3137
% Lights	-	100.0	96.1	94.6	-	95.9	-	98.1	96.0	94.1	-	96.2	-	98.3	95.1	96.0	-	97.5	-	95.2	100.0	100.0	-	98.6	96.6
Buses	0	0	21	8	-	29	0	2	12	0	-	14	0	10	4	12	-	26	0	1	0	0	-	1	70
% Buses	-	0.0	2.7	4.3	-	3.0	-	1.9	1.4	0.0	-	1.4	-	1.2	4.9	3.7	-	2.1	-	4.8	0.0	0.0	-	1.4	2.2
Single-Unit Trucks	0	0	7	2	-	9	0	0	15	1	-	16	0	4	0	1	-	5	0	0	0	0	-	0	30
% Single-Unit Trucks	-	0.0	0.9	1.1	-	0.9	-	0.0	1.7	5.9	-	1.6	-	0.5	0.0	0.3	-	0.4	-	0.0	0.0	0.0	-	0.0	0.9
Articulated Trucks	0	0	2	0	-	2	0	0	7	0	-	7	0	0	0	0	-	0	0	0	0	0	-	0	9
% Articulated Trucks	-	0.0	0.3	0.0	-	0.2	-	0.0	0.8	0.0	-	0.7	-	0.0	0.0	0.0	-	0.0	-	0.0	0.0	0.0	-	0.0	0.3
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
% Bicycles on Road	-	0.0	0.0	0.0	-	0.0	-	0.0	0.0	0.0	-	0.0	-	0.0	0.0	0.0	-	0.0	-	0.0	0.0	0.0	-	0.0	0.0
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	1	-	-
% Pedestrians	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	100.0	-	T -
% Pedestrians	-					-	-				-		-	-	-	-	-		-	-	-	-	100.0		-

ORD 2018-7680 Page 52 of 89

Kenig Lindgren O'Hara Aboona, Inc. 9575 W. Higgins Rd., Suite 400

Rosemont, Illinois, United States 60018 (847)518-9990

Count Name: 63rd Street with Woodward

Avenue
Site Code:
Start Date: 01/21/2017
Page No: 8

Turning Movement Peak Hour Data (5:00 PM)

	1							. •				• • • • • • • • • • • • • • • • • • • •			(,									
			63rd	Street					63rd	Street					Woodwa	rd Avenue					Woodwar	d Avenue			
			East	bound					West	tbound					North	bound					South	bound			
Start Time	U-Turn	Left	Thru	Right	Peds	App. Total	U-Turn	Left	Thru	Right	Peds	App. Total	U-Turn	Left	Thru	Right	Peds	App. Total	U-Turn	Left	Thru	Right	Peds	App. Total	Int. Total
5:00 PM	0	8	228	158	0	394	0	66	226	2	0	294	0	69	12	49	0	130	0	9	29	3	0	41	859
5:15 PM	0	6	238	178	0	422	0	95	197	1	0	293	0	96	13	50	0	159	0	5	42	0	0	47	921
5:30 PM	0	2	251	202	0	455	0	66	202	0	0	268	0	75	11	41	0	127	0	5	39	5	0	49	899
5:45 PM	0	8	239	168	0	415	0	62	203	2	0	267	0	96	13	51	0	160	0	3	30	8	0	41	883
Total	0	24	956	706	0	1686	0	289	828	5	0	1122	0	336	49	191	0	576	0	22	140	16	0	178	3562
Approach %	0.0	1.4	56.7	41.9	-	-	0.0	25.8	73.8	0.4	-	-	0.0	58.3	8.5	33.2	-	-	0.0	12.4	78.7	9.0	-	-	T -
Total %	0.0	0.7	26.8	19.8	-	47.3	0.0	8.1	23.2	0.1	-	31.5	0.0	9.4	1.4	5.4	-	16.2	0.0	0.6	3.9	0.4	-	5.0	-
PHF	0.000	0.750	0.952	0.874	-	0.926	0.000	0.761	0.916	0.625	-	0.954	0.000	0.875	0.942	0.936	-	0.900	0.000	0.611	0.833	0.500	-	0.908	0.967
Lights	0	24	948	706	-	1678	0	287	822	5	-	1114	0	334	48	188	-	570	0	21	140	16	-	177	3539
% Lights	-	100.0	99.2	100.0	-	99.5	-	99.3	99.3	100.0	-	99.3	-	99.4	98.0	98.4	-	99.0	-	95.5	100.0	100.0	-	99.4	99.4
Buses	0	0	3	0	-	3	0	1	1	0	-	2	0	2	0	3	-	5	0	0	0	0	-	0	10
% Buses	-	0.0	0.3	0.0	-	0.2	-	0.3	0.1	0.0	-	0.2	-	0.6	0.0	1.6	-	0.9	-	0.0	0.0	0.0	-	0.0	0.3
Single-Unit Trucks	0	0	3	0	-	3	0	1	4	0	-	5	0	0	1	0	-	1	0	1	0	0	-	1	10
% Single-Unit Trucks	-	0.0	0.3	0.0	-	0.2	-	0.3	0.5	0.0	-	0.4	-	0.0	2.0	0.0	-	0.2	-	4.5	0.0	0.0	-	0.6	0.3
Articulated Trucks	0	0	2	0	-	2	0	0	1	0	-	1	0	0	0	0	-	0	0	0	0	0	-	0	3
% Articulated Trucks	-	0.0	0.2	0.0	-	0.1	-	0.0	0.1	0.0	-	0.1	-	0.0	0.0	0.0	-	0.0	-	0.0	0.0	0.0	-	0.0	0.1
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
% Bicycles on Road	-	0.0	0.0	0.0	-	0.0	-	0.0	0.0	0.0	-	0.0	-	0.0	0.0	0.0	-	0.0	-	0.0	0.0	0.0	-	0.0	0.0
Pedestrians	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	-		-				•	-		-	-	_			_				-			-			

ORD 2018-7680 Page 53 of 89

Level of Service Criteria

ORD 2018-7680 Page 54 of 89

• LEVEL OF SERVICE CRITERIA

	ntersections		
Level of Service		retation	Average Control Delay (seconds per vehicle)
A	Favorable progression. Most v indication and travel through the stopping.	ehicles arrive during the green	≤10
В	Good progression, with more v Level of Service A.	vehicles stopping than for	>10 - 20
С	Individual cycle failures (i.e., of are not able to depart as a resulduring the cycle) may begin to stopping is significant, although the intersection without	It of insufficient capacity appear. Number of vehicles th many vehicles still pass	>20 - 35
D		s high and either progression is is too long. Many vehicles stop re noticeable.	>35 - 55
Е	Progression is unfavorable. The high and the cycle length is longitude frequent.	e volume-to-capacity ratio is ng. Individual cycle failures are	>55 - 80
F	The volume-to-capacity ratio i very poor and the cycle length clear the queue.		>80.0
Unsignalize	d Intersections Level of Service	Average Total Del	av (SEC/VEH)
	A	0 - 1	
	В	> 10 -	15
	С	> 15 -	25
	D	> 25 -	35
	Е	> 35 -	50
	F	> 50)
Source: High	hway Capacity Manual, 2010.		

ORD 2018-7680 Page 55 of 89

Capacity Analysis Sheets

Page 56 of 89 ORD 2018-7680

		НС	S 201	I0 Sig	naliz	ed Int	ersec	tion	Input	Data					
														141441	
General Informatio	-								Intersec			on		4 1	
Agency		KLOA, Inc.							Duration		0.25		7		-
Analyst	\rightarrow	NJB				1/24/2	2017		Area Typ	е	Other	•			*-
Jurisdiction	\rightarrow	DuPage County		Time F		AM			PHF		0.91		_ 🖹 🕽	w ∯ ∈	←
Urban Street	\rightarrow	63rd Street		<u> </u>	is Year	_			Analysis		1> 7:0	00	7		F
Intersection	\rightarrow	63rd Street with Wo		File Na	ame	63rd a	ind Woo	odwar	d AMEX.>	cus				ጎተሰ	
Project Description		Existing AM Peak H	lour										1	14144	P (*
Demand Information	ion				EB		T	W	<u></u> В	7	NB		T	SB	
Approach Movemer	nt			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh/h				23	764	186	106	86	0 17	812	81	328	21	37	11
Signal Information	-				7		= , ;			1	37.88	_	_		
	0.0		6		L. 6	2		20	117			\rightarrow	€ ,		4
, ,	_		Begin	Green	ſ	3.9	53.6	40.		0.0		•	<u> </u>		
	fset, s 0 Reference Point Begin in the proach Movement Emand (v) , veh/h ise Saturation Flow Rate (s_0) , veh/h irking (N_m) , man/h					0.0	4.5	4.5	4.5	0.0		↗ │	7		
Force Mode Fix	red	Simult. Gap N/S	On	Red	1.0	0.0	1.5	1.5	1.5	0.0		5	6	7	
Troffic Information	•				EB			WB	,		NB		1	SB	
				L	T	R		T	R		T	R		T	R
	111			23	764	186	106	860		812	81	328	21	37	11
	veh/h	<u> </u>		0	0	0	0	0	0	0	0	0	0	0	0
` ,				1900	2000	1900	1900	1900		1900	1900	1900	1900	1900	1900
		ate (30), Veri/II		1900	None	1900	1900	None		1300	None	1900	1900	None	1900
- , ,		<u></u>		0	4	5	2	4	5	2	5	4		0	
		0		0	0	0	0	0	0	0	0	0	0	0	0
·				0	0	0	0	0	0	0	0	0	0	0	0
. ,				3	4	3	3	4	3	3	3	3	3	3	3
• • • •	rking (N _m), man/h avy Vehicles (P _{HV}), % d / Bike / RTOR, /h ses (N _b), buses/h rival Type (AT) stream Filtering (I) ne Width (W), ft rn Bay Length, ft ade (Pg), %					1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
	ses (N _b), buses/h ival Type (AT) stream Filtering (I) ne Width (W), ft rn Bay Length, ft					12.0	12.0	12.0		12.0	12.0	12.0	1.00	12.0	1.00
, ,				12.0 125	12.0	350	340	0		305	0	180		0	
Grade (<i>Pg</i>), %					0			0	+		0			0	
Speed Limit, mi/h				40	40	40	40	40	40	30	30	30	25	25	25
Phase Information		DI 0 13		EBL		EBT	WBI	_	WBT	NBL	_	NBT	SBL	_	SBT
Maximum Green (G				13.0	_	52.0	16.0	-	55.0	48.0	_	48.0	_	_	14.0
Yellow Change Intel Red Clearance Inte		` ,		3.0 1.0	_	4.5 1.5	3.0 1.0	_	4.5 1.5	4.5 1.5	_	4.5 1.5			4.5 1.5
Minimum Green (G				3		15	3		1.5	3		8	3		8
Start-Up Lost Time				2.0		2.0	2.0	_	2.0	2.0		2.0	2.0		2.0
Extension of Effective	` '			2.0	_	2.0	2.0	_	2.0	2.0		2.0	2.0	_	2.0
Passage (<i>PT</i>), s		. //		3.0	_	7.0	3.0	-	7.0	3.0	_	4.0	3.0		4.0
Recall Mode	<u> </u>					Min	Off		Min	Off		Off	Off		Off
Dual Entry						Yes	Yes	;	Yes	No		Yes	No		Yes
Walk (<i>Walk</i>), s	/alk (<i>Walk</i>), s					0.0	0.0		0.0	0.0		0.0	0.0		0.0
Pedestrian Clearan	edestrian Clearance Time (PC), s					0.0	0.0		0.0	0.0		0.0	0.0	\perp	0.0
Multimodal Inform	fultimodal Information				EB			WB			NB			SB	
#Iditimodal Information Sth % Speed / Rest in Walk / Corner Radius				0	No	25	0	No	25	0	No	25	0	No	25
Walkway / Crosswalk Width / Length, ft				9.0	12	0	9.0	12	0	9.0	12	0	9.0	12	0
Street Width / Island				0	0	No	0	0	No	0	0	No	0	0	No
Width Outside / Bike				12	5.0	2.0	12	5.0		12	5.0	2.0	12	5.0	2.0
Podoctrian Signal /	destrian Signal / Occupied Parking					0.50	No		0.50	No		0.50	No		0.50

Generated: 1/27/2017 3:53:48 PM

ORD 2018-7680 Page 57 of 89

	HCS 2010 S	- ignan	Ju				Juit3 0	4.11111	~. y				
General Information							Intersec	tion Inf	ormatio	on	Į	작사하다	Ja U
Agency	KLOA, Inc.						Duration	, h	0.25			4 1	
Analyst	NJB	Analys	sis Date	e 1/24/2	2017		Area Typ	e	Other		ے ا		
Jurisdiction	DuPage County	Time I		AM			PHF		0.91		∳	w∳e	-
Urban Street	63rd Street	Analys	sis Yea	r 2017			Analysis	Period	1> 7:0	00	·		-
Intersection	63rd Street with Woodw	File N			and Woo	odwai	d AMEX.					ካ ተ ተ	
Project Description	Existing AM Peak Hour										ħ	4 44	1 + (*
Demand Information		7	EB		1	V	/B	<u> </u>	NB		7	SB	
Approach Movement		L	T	R	L	_	<u>-</u> Г R	L	T	R	L	T	R
Demand (<i>v</i>), veh/h		23	764	186	106	86		812	81	328	21	37	11
Signal Information			21	K	= .		211	2	-1700	_	_		
Cycle, s 130.0	Reference Phase 6		P 5		∏ ≓ •	2	512		×	\rightarrow	€ .		4
Offset, s 0	Reference Point Begin	Green	3.1	3.9	53.6	40	0.0 7.5	0.0			<u> </u>		7
Uncoordinated No	Simult. Gap E/W On	Yellow		0.0	4.5	4.	5 4.5	0.0		> '	❤		
Force Mode Fixed	Simult. Gap N/S On	Red	1.0	0.0	1.5	1.:	5 1.5	0.0		5	6	7	
Time a December		EDI		- FDT	\\/D		\A/DT	NDI		NDT	ODI		ODT
Timer Results Assigned Phase		EBI 5	-	EBT 2	WB 1	<u> </u>	WBT 6	NBI	-	NBT 8	SBL	+	SBT 4
Case Number		1.1		3.0	1.1		4.0			9.0			12.0
Phase Duration, s		7.1		59.6	10.9	\rightarrow	63.5			46.0		+	13.5
Change Period, (Y+R	-) c	4.0	_	6.0	4.0	\rightarrow	6.0			6.0			6.0
Max Allow Headway (4.0	_	0.0	4.0	-	0.0			5.1		-	5.2
Queue Clearance Time	<u> </u>	3.0	_	0.0	6.8	_	0.0			36.4			4.7
Green Extension Time		0.0	_	0.0	0.0	_	0.0			3.6		-	0.1
Phase Call Probability	(g e), s	1.00	_	0.0	1.00	\rightarrow	0.0	_		1.00		\rightarrow	0.94
Max Out Probability		0.00	_		0.03	\rightarrow			_	0.97		+	0.90
,													
Movement Group Res	sults		EB			WE	3		NB			SB	_
Approach Movement		L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Movement		5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate (v		25	840	204	116	484	_	491	491	360	40		36
Adjusted Saturation Flo		1810	1831	1533	1774	182	_	1774	1780	1548	1846		1792
Queue Service Time (- ,	1.0	19.3	5.6	4.8	21.		34.4	34.2	25.2	2.7		2.5
Cycle Queue Clearanc	ce Time (g c), s	1.0	19.3	5.6	4.8	21.		34.4	34.2	25.2	2.7		2.5
Green Ratio (g/C)		0.44	0.41	0.72	0.48	0.4	_	0.31	0.31	0.36	0.06		0.06
Capacity (c), veh/h		250	1509		322	807		546	548	559	106		103
Volume-to-Capacity Ra		0.101	_	0.185	0.362	0.59	_	0.899	0.895	-	0.374		0.349
Back of Queue (Q), ft		20.2	307.6		90.7	342		621.3	632.7	388.6	64		55.6
, ,	eh/ln (95 th percentile) (RQ) (95 th percentile)	0.8	0.00	3.1 0.23	3.6 0.27	0.0	_	24.5 2.04	0.00	15.1 2.16	2.5 0.00		0.00
Uniform Delay (d 1), s	, , , , ,	22.6	21.6	5.9	20.9	19.4		43.1	43.0	34.6	59.0		58.9
Incremental Delay (d 2		0.2	1.5	0.4	0.7	3.3		17.1	16.5	2.7	3.1		2.9
Initial Queue Delay (d	,-	0.2	0.0	0.4	0.0	0.0	_	0.0	0.0	0.0	0.0		0.0
Control Delay (d), s/v		22.8	23.0	6.3	21.6	22.		60.1	59.5	37.3	62.1		61.8
Level of Service (LOS)		C	C	A	C	C	C	E	E	D	E		E
Approach Delay, s/veh		19.8		В	22.7		C	53.8		D	61.9		E
Intersection Delay, s/ve					1.4						С		
Multimodal Results			EB			WE			NB			SB	
Pedestrian LOS Score		2.8	-	С	2.3	_	В	2.9	_	С	3.0		С
Bicycle LOS Score / LO	OS	1.4		Α	1.4		Α	2.7		В	0.6		Α

ORD 2018-7680 Page 58 of 89

	HCS 2010) Sigr	nalize	d Inte	ersect	ion Ir	nterme	diate	Valu	ies				
General Information							Into	rsectio	n Infor	matic	n n			
	OA, Inc.						_	ation, h		0.25)II	\dashv .		
Agency KL Analyst NJ		ΙΛ	nalysis	Data	1/24/201	17		Type		0.23 Other		-* -*		
	ıРage County		ime Pei	_	4M	17	PHF	• •	\rightarrow	0.91		→ +		
	rd Street		nalysis		2017			ysis Pe	\rightarrow	0.91 1> 7:(າດ	- 4		
	rd Street with Wood		ile Nam	_		4 /Mood	lward AM	•	ilou	1- 7.0	JU	7		
	isting AM Peak Hou		TIE INAII	ie (osiu and	ı vvoou	IWaru Aivi	⊏∧.xus				\dashv		
Project Description EX	disting Aivi Peak Hot	II												
Demand Information				EB			WB	$\overline{}$		NB			SB	
Approach Movement			L	Т	R	L	Т	R	L	Т	R	L	T	R
Demand (v), veh/h			23	764	186	106	860	17	812	81	328	3 21	37	11
													-,-	
Signal Information				7 _	\succeq	, =		211		27274	_			
	eference Phase	6	Г	2	2	₹ "	2 ST2 6					← 2		4
			Green 3	3.1	3.9	53.6	40.0	7.5	0.0		- 100	K		
			ellow 3	3.0	0.0	4.5		4.5	0.0		/	7		
Force Mode Fixed Si	imult. Gap N/S	On F	Red 1	1.0	0.0	1.5	1.5	1.5	0.0		5	6	7	
			EB		T T	WB	<u> </u>	1	N	R		<u> </u>	SB	
Saturation Flow / Delay		1	Т	R		T	R	1	7		R	1	T	R
Lane Width Adjustment Fa	actor (f _w)	1.000	1.000	1.000	1.000		_	_	_	_	1.000	1.000	1.000	1.000
Heavy Vehicle Adjustment		1.000	_	0.952	_	0.962	_		_	_	0.962	0.952	1.000	1.000
Approach Grade Adjustme	<u> </u>	1.000		1.000			_			_	1.000	1.000	1.000	1.000
Parking Activity Adjustmen		1.000	_	1.000	_	1.000				_	1.000	1.000	1.000	1.000
Bus Blockage Adjustment	(, ,	1.000		1.000						_	1.000	1.000	1.000	1.000
Area Type Adjustment Fac		1.000		1.000	_	1.000	_			_	1.000	1.000	1.000	1.000
Lane Utilization Adjustmer		1.000		1.000		1.000			_	_	1.000	1.000	1.000	1.000
Left-Turn Adjustment Fact	· · · · · ·	0.952	_	1.000	0.952		_	0.95		_	1.000	0.000	0.972	1.000
Right-Turn Adjustment Fac		0.002	0.000	0.847	_	0.993			0.0		0.847	0.000	0.937	0.943
Left-Turn Pedestrian Adjus		1.000	_		1.000	_		1.00	_			1.000		
Right-Turn Ped-Bike Adjus				1.000			1.000			1	1.000			1.000
Movement Saturation Flow	<u> </u>	1810	3662	1533		3571		1774	1 17	80	1548	1071	1966	601
Proportion of Vehicles Arri		0.02	0.55	0.41	0.05	0.59	_	0.31		-	0.31	0.06	0.06	0.06
Incremental Delay Factor		0.11	0.50	0.50	0.11	0.50	0.50	0.40	0.4	40	0.24	0.15		0.15
Signal Timing / Moveme	nt Groups	EB	L E	BT/R	WE	3L	WBT/R	N	BL	NE	BT/R	SBI		SBT/R
Lost Time (t∠)		4.0		6.0	4.0		6.0	<u> </u>			5.0			6.0
Green Ratio (g/C)		0.4		0.41	0.4		0.44	-			.31		_	0.06
Permitted Saturation Flow		592	2	0	65	2	0			17	774			0
Shared Saturation Flow R	, ,	50.		0.0		_	0.0				. 0			0.0
Permitted Effective Green		53.0		0.0	55.		0.0				0.0			0.0
Permitted Service Time (g	*	33.4 0.9	_	0.0	34.		0.0			0	0.0			0.0
Permitted Queue Service	· · · · · · · · · · · · · · · · · · ·	0.0		0.0	0.0		0.0				0.0			0.0
U (U)	me to First Blockage (<i>gt</i>), s			0.0	0.0	,	0.0							0.0
	neue Service Time Before Blockage (g_{fs}), so tected Right Saturation Flow (s_R), veh/h/li			1533						15	548			
-	otected Right Saturation Flow (s_R), veh/h/ln otected Right Effective Green Time (g_R), s			40.0		+					5.9			
Multimodal						WE	3		N	IB			SB	
	edestrian <i>Fw Fv</i>			0.00	1.55		0.00	2 1	07		.00	2.22		0.00
Pedestrian F _s / F _{delay}				0.00	0.00		0.121		000		172	0.00		0.163
Pedestrian Mcorner / Mcw		0.00			0.50		J 1			<u> </u>		3.50	-	
Bicycle <i>c_b</i> / <i>d_b</i>		824.4	44 3	22.46	883.	88	20.24			72	2.19	115.1	11	57.73
	ycle <i>cь / dь</i> ycle <i>F_w / F_v</i>			0.88	-3.6		0.89	2	64		.21	-3.64		0.06

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

WARNING: The shared-plus-exclusive turn lane solution is an approximation of the HCM method, because more than three lane groups cannot be accommodated. Input data for Percent Turns in Shared Lane are used to specify proportion of turning vehicles in the shared lane.

--- Comments ---

Copyright © 2017 University of Florida, All Rights Reserved.

HCS 2010™ Streets Version 6.90

Generated: 1/27/2017 3:53:48 PM

Page 60 of 89 ORD 2018-7680

HCS 2	010 Sig	jnaliz	ed Int	ersec	tion	Input	Data					
						1.4					14141	
General Information					\rightarrow	Intersec			on	- 6	4 1	
Agency KLOA, Inc.						Duration		0.25		7		-
Analyst NJB		sis Date		2017		Area Typ	е	Other				→
Jurisdiction DuPage County		Period	PM		_	PHF		0.97		- 🖹 🗮	w∳€	←
Urban Street 63rd Street		sis Year				Analysis		1> 7:0	00	7		F
Intersection 63rd Street with Woodw.	File N	ame	63rd a	and Woo	odward	d PMEX.>	cus				ጎተሰ	
Project Description Existing PM Peak Hour										1	1 1 1 4 Y	r (*
Demand Information		EB		7	WI	3		NB		T	SB	
Approach Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh/h	24	956	706	289	82	8 5	336	49	191	22	140	16
Signal Information	_	l a .	_ 5	 		211	ı l	2000	_	_		
Cycle, s 130.0 Reference Phase 2	_	7	2	∏ ≅ •	7 6	17				€ ,		4
Offset, s 0 Reference Point Beg	- Green	1 (5.5	67.7	18.		0.0			<u>-</u>		7
Uncoordinated No Simult. Gap E/W On	Yellow	/ 3.0	3.0	4.5	4.5	4.5	0.0		/	Z		
Force Mode Fixed Simult. Gap N/S On	Red	1.0	1.0	1.5	1.5	1.5	0.0		5	6	7	
Traffic Information		EB			WB			NB			SB	
Approach Movement		Т	R		T	R	L	T	R	-	T	R
Demand (v), veh/h	24	956	706	289	828	5	336	49	191	22	140	16
Initial Queue (Q _b), veh/h	0	0	0	0	020	0	0	0	0	0	0	0
Base Saturation Flow Rate (s₀), veh/h	1900	2000	1900	1900	1900		1900	1900	1900	1900	1900	1900
Parking (N _m), man/h	1900	None	1900	1900	None	_	1900	None	1900	1900	None	1900
Heavy Vehicles (<i>Phv</i>), %	0	1	0	1	1	5	1	2	2		0	
Ped / Bike / RTOR, /h	0	0	0	0	0	0	0	0	0	0	0	0
Buses (N _b), buses/h	0	0	0	0	0	0	0	0	0	0	0	0
Arrival Type (AT)	3	4	3	3	4	3	3	3	3	3	3	3
Upstream Filtering (/)	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (W), ft	12.0	12.0	12.0	12.0	12.0		12.0	12.0	12.0	1.00	12.0	1.00
Turn Bay Length, ft	125	0	350	340	0		305	0	180		0	
Grade (<i>Pg</i>), %	120	0	000	0.10	0		000	0	100		0	
Speed Limit, mi/h	40	40	40	40	40	40	30	30	30	25	25	25
Phase Information	EBI	_	EBT	WBI	_	WBT	NBL	_	NBT	SBL	_	SBT
Maximum Green (<i>G_{max}</i>) or Phase Split, s	13.0	_	48.0	30.0	_	65.0	31.0	_	31.0		\rightarrow	21.0
Yellow Change Interval (Y), s	3.0	_	4.5	3.0	_	4.5	4.5	_	4.5			4.5
Red Clearance Interval (Rc), s	1.0	'	1.5	1.0	_	1.5	1.5		1.5			1.5
Minimum Green (Gmin), s	3		15	3		15	3		8	3		8
Start-Up Lost Time (<i>lt</i>), s Extension of Effective Green (<i>e</i>), s	2.0	_	2.0	2.0	_	2.0	2.0		2.0	2.0		2.0
Passage (<i>PT</i>), s	3.0		7.0	3.0		7.0	3.0		4.0	3.0		4.0
Recall Mode	Off	_	Min	Off	-	Min	Off	_	Off	Off	_	Off
Dual Entry	Yes	_	Yes	Yes	-	Yes	No	_	Yes	No		Yes
Walk (<i>Walk</i>), s	0.0	_	0.0	0.0	_	0.0	0.0	_	0.0	0.0	_	0.0
Pedestrian Clearance Time (<i>PC</i>), s	0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0
Multimodal Information	7	ED			WD			NID			CP.	
85th % Speed / Rest in Walk / Corner Radius	0	EB No	25	0	WB No	25	0	NB No	25	0	SB No	25
Walkway / Crosswalk Width / Length, ft	9.0	12	0	9.0	12	0	9.0	12	0	9.0	12	0
in any in a second seco		0	No	0	0	No	0	0	No	0	0	No
Street Width / Island / Curb	∥ 0	I U	INU	U U	l O	110						
Street Width / Island / Curb Width Outside / Bike Lane / Shoulder, ft	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0

ORD 2018-7680 Page 61 of 89

KD 2018-7680		HCS 2	010 S	ignali	zed I	nters	ection	ı Re	sults S	umm	ary				Page 61
General Inform	nation								Intersec			on		4741	Ja la
Agency		KLOA, Inc.							Duration		0.25		-	**	1
Analyst		NJB		Analys	sis Date	1/24/2	2017		Area Typ	е	Other	-	<u></u> →		<u></u>
Jurisdiction		DuPage County		Time F	Period	PM			PHF		0.97		*	w‡ε	←
Urban Street		63rd Street		Analys	sis Yea	2017			Analysis	Period	1> 7:	00	4		4
Intersection		63rd Street with Wo	oodw	File Na	ame	63rd a	and Woo	odwar	d PMEX.	xus				547	
Project Descrip	tion	Existing PM Peak I	Hour										ñ	বাক্প	†* (*
Demand Infor	mation			_	EB		7	W	R	7	NB		7	SB	
Approach Move					T	R	1	T		L	T	R	L	T	R
Demand (v), v				24	956	706	289	82		336	49	191	22	140	
Bomana (v), v	OTI,TT				000	100	200	02		000	10	101		110	10
Signal Informa	ation				- 2	2	ַ . י	<u>_</u>	211.	2					
Cycle, s	130.0	Reference Phase	2		P 8			20	512		_	\rightarrow \neg	$\boldsymbol{\leftrightarrow}$		
Offset, s	0	Reference Point	Begin	Green	3.0	5.5	67.7	18	.6 9.2	0.0		1	Y 2		4
Uncoordinated	No	Simult. Gap E/W	On	Yellow		3.0	4.5	4.5		0.0		>	→		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.5	1.5		0.0		5	6	7	
Timer Results				EBI	-	EBT	WB	L	WBT	NBI	_	NBT	SBL		SBT
Assigned Phas	е			5	_	2	1	_	6	_	_	8		+	4
Case Number				1.1	_	3.0	1.1	_	4.0	_	-	9.0		+	12.0
Phase Duration		`		7.0	_	73.7	16.5	_	83.2		_	24.6	_	\rightarrow	15.2
Change Period				4.0	_	6.0	4.0	-	6.0		-	6.0		_	6.0
Max Allow Hea				4.0	_	0.0	4.0	_	0.0	_	_	5.2		\rightarrow	5.1
Queue Clearan				2.8			11.5	_			-	16.3		+	8.5
Green Extension		(<i>g</i> _e), s		0.0	-	0.0	1.0	-	0.0	_	_	2.2		+	0.7
Phase Call Pro				1.00			1.00	_				1.00		+	1.00
Max Out Proba	bility			0.00)		0.00)			_	0.45		_	0.01
Movement Gro	oup Res	sults			EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ement			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow	Rate (v), veh/h		25	986	728	298	430	429	191	206	197	96		87
Adjusted Satur	ation Flo	ow Rate (s), veh/h/	ln	1810	1885	1610	1792	188	1 1877	1792	1809	1579	1878		1837
Queue Service		- ,:		0.8	16.0	36.1	9.5	8.9	9.0	13.3	14.3	14.1	6.5		6.0
		e Time (<i>g c</i>), s		0.8	16.0	36.1	9.5	8.9		13.3	14.3	14.1	6.5		6.0
Green Ratio (g	•			0.54	0.52	0.66	0.63	0.59	_	0.14	0.14	0.24	0.07		0.07
Capacity (c), v				430	1962	1068	456	1117		256	259	378	133		130
Volume-to-Cap		· · · · · · · · · · · · · · · · · · ·		0.058		-	0.653	0.38		0.744	_	0.521	0.724		0.669
		/In (95 th percentile		15.1	236.2		169.8	142.		269.4	298.4	244.1	164.4		140.3
		eh/ln (95 th percent		0.6	9.4	18.6	6.7	5.7		10.7	11.7	9.6	6.3		5.6
	•	RQ) (95 th percen	tile)	0.12	0.00	1.33	0.50	0.00		0.88	0.00	1.36	0.00		0.00
Uniform Delay	` '			13.7	12.0	13.4	13.1	6.4		53.4	53.9	43.0	59.1		58.9
Incremental De		,		0.1	0.9	3.5	1.6	1.0		7.3	10.7	1.6	10.1		8.1
Initial Queue D	- '			0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0		0.0
Control Delay (13.8	12.9	17.0	14.7	7.4	_	60.7	64.6	44.5	69.3		67.0
Level of Service				B	В	В	В	A	A	E	E .	D	E		E
Approach Dela	•			14.6)	В	9.3		A	56.7		Е	68.2		Е
Intersection De	ay, s/ve	#II / LUS				22	2.4						C		
Multimodal Re	sults				EB			WE	3		NB			SB	
Pedestrian LOS		/ LOS		2.8		С	2.3		В	2.9	-	С	3.0	T	С
Bicycle LOS So				1.9	_	Α	1.4	_	Α	1.5		A	0.6		Α

ORD 2018-7680 Page 62 of 89

		HCS 20	10	Sig	ınal	zec	d Inte	ersect	ion l	Inte	erme	diat	e Va	lues				
														_		_		
General Inforn	nation	T												forma		_		
Agency		KLOA, Inc.										ation, h	1	0.25		_*		
Analyst		NJB					_	1/24/20	17		_	туре		Oth		→		
Jurisdiction		DuPage County			Time			PM			PHF			0.97		- 4		
Urban Street		63rd Street					_	2017				lysis P		1> 7	7:00	7		
Intersection		63rd Street with Wo			File	Nam	e (33rd and	d Woo	dwa	rd PM	IEX.xu	s					
Project Descrip	tion	Existing PM Peak I	lou	r			_	_	_		_	_		_	_		_	
Demand Inform	mation						EB			V	VB			N	 В	7	SI	3
Approach Move					ī	Т	T	R	1	_	T	R	Т	Т		L	T	
Demand (v), v					24	+	956	706	289	-	28	5	336		_	_	14	
Signal Informa	ation	V-				\top	2	7	- 5	4		211	Т		_	-		
Cycle, s	130.0	Reference Phase		2			" ~	2	≓ *	1	512				-	♣ .		4
Offset, s	0	Reference Point	В	egin	Gree	n 3	.0	5.5	67.7	18	8.6	9.2	0.0		- 0	K		*
Uncoordinated	No	Simult. Gap E/W	(On	Yello			3.0	4.5	4.		4.5	0.0		<i>></i>	\Rightarrow		
Force Mode	Fixed	Simult. Gap N/S	(On	Red	1	.0	1.0	1.5	1.	.5	1.5	0.0		5	6		7
0 1 11 -	'		_	<u>.</u>		EB -		١.	W	-		٠.		NB		<u> </u>	SB	
Saturation Flo				L	_	T	R	L	T	_	R	L	00	T	R	L	T	R
Lane Width Adj			_	1.00	$\overline{}$	000	1.000		_	_	1.000	_	\rightarrow	1.000	1.000	1.000	1.00	_
	ch Grade Adjustment Factor (f _g)					990	1.000			_	1.000	_	_	0.980	0.980	0.952	1.00	
	ach Grade Adjustment Factor (f_g) g Activity Adjustment Factor (f_p)						1.000	_		\rightarrow	1.000	_	\rightarrow	1.000	1.000	1.000	1.00	
			_	1.00	_	000	1.000			_	1.000		_	1.000	1.000	1.000	1.00	
Bus Blockage A			_	1.00		000	1.000	_	_	\rightarrow	1.000	_	\rightarrow	1.000	1.000	1.000	1.00	
Area Type Adju		· '		1.00	_	000	1.000		-	_	1.000	_	_	1.000	1.000	1.000	1.00	_
		ment Factor (<i>f</i> ∟∪)	_	1.00		952	1.000			\rightarrow	1.000	_	_	1.000	1.000	1.000	1.00	
Left-Turn Adjus		· ,		0.95	_	000		0.952		\rightarrow		0.9	_	0.000		0.000	0.98	
Right-Turn Adju			_	_	_	000	0.847	_	0.99	98	0.998	_	_	0.000	0.847		0.96	6 0.967
		djustment Factor (f᠘	_	1.00	0			1.000		4		1.0	00			1.000		
		djustment Factor (f _R	ob)				1.000	_		\rightarrow	1.000	_	_		1.000			1.000
		low Rate (s), veh/h		181	_	770	1610	+		_	23	179	_	1809	1579	442	292	
-		Arriving on Green (F	?)	0.02	_	.69	0.52	0.10	0.7	\rightarrow	0.59	0.1	_	0.14	0.14	0.07	0.07	
Incremental De	lay Fac	tor (<i>k</i>)		0.1	1 0	.50	0.50	0.11	0.5	0	0.50	0.1	9	0.22	0.15	0.15		0.15
Signal Timing	/ Move	ment Groups		F	BL		BT/R	WE	31	\٨/	BT/R		NBL	N	NBT/R	SBI		SBT/R
Lost Time (t _L)	/ IVIOVE	ment Groups	-	_	.0	+	6.0	4.0	_		6.0		NDL	+-'	6.0	351	-	6.0
Green Ratio (g	/C)			_	54		0.52	0.6			0.59				0.14			0.07
		low Rate (<i>s_p</i>), veh/h	/ln	_	54 54		0.02	57			0			_	1792			0.07
		v Rate (ssh), veh/h/lr			- 1			57										Ü
		een Time (g_p) , s		6	7.7		0.0	69	.7	(0.0				0.0			0.0
Permitted Serv		(3.7			5.2	-	0.0	51	_		0.0				0.0		$\overline{}$	0.0
		ce Time (g_{ps}), s			.1			19	_									
Time to First BI		(3.).		_	.0		0.0	0.0		(0.0				0.0		$\overline{}$	0.0
		efore Blockage (<i>gf</i> s)	s					Ţ.,										3.0
		tion Flow (s_R), veh/h	_				1610								1579		$\overline{}$	
		ve Green Time (g_R) ,	_			_	18.6							_	12.5			
Multimodal	- 23.	(3//)				EB			W	′B				NB			SE	
Pedestrian F _w /	' F _v			2.	107	-	0.00	1.5	-		0.00	2	.107		0.00	2.22	- 1	0.00
Pedestrian F _s /				_	000	_	0.108	0.0	_		.095	_	.000	_	0.00	0.00	_	0.161
Pedestrian Mco		<i>y</i>		J.(3.0		<u> </u>						0.00		3.101
Bicycle <i>c_b</i> / <i>d_b</i>	, 1910/			104	1.02	1	4.94	1187	.69	10	0.72				72.19	141.7	77	56.11
Bicycle Fw / Fv					.64	-	1.43	-3.6			0.95		3.64	_	0.98	-3.6	_	0.15
, w / / v								-0.0	- 1				J.UT		3.30	J.0-		

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

WARNING: The shared-plus-exclusive turn lane solution is an approximation of the HCM method, because more than three lane groups cannot be accommodated. Input data for Percent Turns in Shared Lane are used to specify proportion of turning vehicles in the shared lane.

--- Comments ---

Copyright © 2017 University of Florida, All Rights Reserved.

HCS 2010™ Streets Version 6.90

Generated: 1/27/2017 4:15:59 PM

ORD 2018-7680 Page 64 of 89

		НС	S 201	I0 Sig	naliz	ed Int	ersec	tion	Input	Data					
General Inform	nation								Intersec	tion Inf	ormatic	n e		4141	la L
-	nation	IVI OA Ina						\rightarrow			0.25	ΣΠ		44	
Agency		KLOA, Inc.		A == 1. /-	is Data	1/24/2	0047		Duration,		0.25 Other		7		£_ &
Analyst Jurisdiction		-		Time F	sis Date				Area Typ PHF	e	0.95			w ∳ E	<u></u>
Urban Street		DuPage County 63rd Street		_			lidday	_	Analysis	Dariad	1> 7:0	20	=======================================		<u>_</u>
			a a duu		sis Year		nd Ma				177.0	JU	-		7
Intersection	4:	63rd Street with Wo		File Na	ame	0310 8	and vvoc	odward	d SATEX.	xus			- 5	্ৰণকপ বিশক্ষ	to 6
Project Descrip	tion	Existing SAT Midda	ту Реак	Hour					-					7 1 7 1	- 1
Demand Inform	nation				EB			WI	В		NB		T	SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			20	708	441	189	82	4 6	411	39	234	18	55	17
Signal Informa	ation				T				211	<u> </u>			_		
Cycle, s	110.0	Reference Phase	2	1	7 0	- 3	≡ ₹	H	247	·		<u> </u>	7		
Offset, s	0	Reference Point	Begin		7	ſ	· 🔁	30					2		4
Uncoordinated		Simult. Gap E/W	On	Green		1.5	52.1	19.		0.0	_		Δ		
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	1.0	3.0	4.5 1.5	4.5 1.5		0.0			6	7	
1 orce wode	TIXEU	Simult. Gap N/S	OII	IXeu	1.0	1.0	1.0	1.5	1.5	10.0					
Traffic Informa	ation				EB			WB			NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	T	R	L	Т	R
Demand (v), ve	h/h			20	708	441	189	824	6	411	39	234	18	55	17
Initial Queue (C	Q _b), veh/	h .		0	0	0	0	0	0	0	0	0	0	0	0
Base Saturation	n Flow F	Rate (s₀), veh/h		1900	2000	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Parking (Nm), m	nan/h				None			None	Э		None			None	
Heavy Vehicles	(<i>P</i> _{HV}), ^o	%		5	1	1	1	2		0	3	0		0	
Ped / Bike / RT	OR, /h			0	0	0	0	0	0	0	0	0	0	0	0
Buses (N _b), bus	ses/h			0	0	0	0	0	0	0	0	0	0	0	0
Arrival Type (A7	T)			3	4	3	3	4	3	3	3	3	3	3	3
Upstream Filter	ing (/)			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (W)), ft			12.0	12.0	12.0	12.0	12.0		12.0	12.0	12.0		12.0	
Turn Bay Lengt	h, ft			125	0	350	340	0		305	0	180		0	
Grade (<i>Pg</i>), %					0			0			0			0	
Speed Limit, mi	i/h			40	40	40	40	40	40	30	30	30	25	25	25
Phase Informa	ition			EBL		EBT	WBI		WBT	NBL		NBT	SBL		SBT
) or Phase Split, s		13.0		39.0	19.0	_	45.0	33.0		33.0		_	19.0
Yellow Change		, , ,		3.0	_	4.5	3.0	_	4.5	4.5		4.5			4.5
Red Clearance		· ,		1.0	_	1.5	1.0	_	1.5	1.5	_	1.5			1.5
Minimum Greer				3		15	3		15	3		8	3		8
Start-Up Lost T	ime (<i>lt</i>)	, S		2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Extension of Ef		Green (e), s		2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Passage (<i>PT</i>),	S			3.0	_	7.0	3.0	_	7.0	3.0	_	4.0	3.0		4.0
Recall Mode				Off	_	Min	Off	_	Min	Off		Off	Off		Off
Dual Entry				Yes		Yes	Yes	_	Yes	No	_	Yes	No		Yes
Walk (<i>Walk</i>), s				0.0	_	0.0	0.0	_	0.0	0.0		0.0	0.0	_	0.0
Pedestrian Clea	arance ⁻	Time (PC), s		0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0
Multimodal Inf	ormatio	on			EB			WB			NB			SB	
85th % Speed /	Rest in	Walk / Corner Radi	us	0	No	25	0	No	25	0	No	25	0	No	25
		Vidth / Length, ft		9.0	12	0	9.0	12	0	9.0	12	0	9.0	12	0
Street Width / Is	sland / (Curb		0	0	No	0	0	No	0	0	No	0	0	No
		ane / Shoulder, ft		12	5.0	2.0	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0
Pedestrian Sigr	nal / Occ	cupied Parking		No		0.50	No		0.50	No		0.50	No		0.50

Generated: 1/27/2017 4:16:37 PM

ORD 2018-7680 Page 65 of 89

ZD 2018-7680		HCS 2	010 S	ignali	zed l	nters	ectior	ı Re	sults S	umm	ary				Page 65
_															
General Inform	nation								Intersec		-	on		4 744 1	The same of the sa
Agency		KLOA, Inc.							Duration		0.25		-	**	-
Analyst		NJB				1/24/2	2017		Area Typ	е	Other	-	<u></u> →		<u>.</u>
Jurisdiction		DuPage County		Time F	Period	SAT N	/lidday		PHF		0.95		*	₩ ‡ E	←
Urban Street		63rd Street		Analys	sis Year	r 2017			Analysis	Period	1> 7:0	00	4		Tr.
Intersection		63rd Street with Wo	oodw	File Na	ame	63rd a	and Woo	odwar	d SATEX	.xus				541	
Project Descrip	tion	Existing SAT Midda	ay Peak	Hour									ñ	বাক্স	7 4 7
Demand Infor	mation			Γ	EB		7	W	'R	7	NB		7	SB	
Approach Move					T	R	 	T 7		L	T	R	L	T	R
Demand (v), v				20	708	441	189	82		411	39	234	18	55	17
Demand (V), V	CII/II			20	700	441	109	02	14 0	411	39	204	10	33	17
Signal Informa	ation					2		<u> </u>	1	2					
Cycle, s	110.0	Reference Phase	2		P 8		∃		542		₩		$\boldsymbol{\alpha}$		
Offset, s	0	Reference Point	Begin	Green	3.0	1.5	52.1	19	.8 7.6	0.0		î	2		4
Uncoordinated	No	Simult. Gap E/W	On	Yellow		3.0	4.5	4.5		0.0		,	→		
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.5	1.5		0.0		5	6	7	
Timer Results				EBI		EBT	WB	L	WBT	NBI	_	NBT	SBL		SBT
Assigned Phas	е			5		2	1	_	6			8		\bot	4
Case Number				1.1		3.0	1.1	_	4.0			9.0		+	12.0
Phase Duration				7.0	_	58.1	12.5	_	63.6			25.8		\perp	13.6
Change Period				4.0	_	6.0	4.0	-	6.0		_	6.0		+	6.0
Max Allow Hea	- '	· · · · · · · · · · · · · · · · · · ·		4.0	_	0.0	4.0	_	0.0			5.2		\dashv	5.2
Queue Clearan				2.7			7.9	_				16.8		\bot	4.8
Green Extension		(g e), s		0.0	-	0.0	0.6	_	0.0		\perp	3.1		\bot	0.3
Phase Call Pro				1.00)		1.00)				1.00		_	0.94
Max Out Proba	bility			0.00)		0.00					0.39			0.00
Movement Gro	oup Res	sults			EB			WE	3		NB			SB	
Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Assigned Move	ment			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow), veh/h		21	745	464	199	437	436	238	236	246	50		45
Adjusted Satur	ation Flo	ow Rate (s), veh/h/	ln	1723	1885	1594	1792	186	3 1858	1810	1816	1610	1865		1773
Queue Service				0.7	10.9	15.6	5.9	11.3	3 11.4	13.7	13.5	14.8	2.8		2.7
Cycle Queue C	learanc	e Time (<i>g c</i>), s		0.7	10.9	15.6	5.9	11.3	3 11.4	13.7	13.5	14.8	2.8		2.7
Green Ratio (g	•			0.50	0.47	0.65	0.57	0.52	2 0.52	0.18	0.18	0.26	0.07		0.07
Capacity (c), v	/eh/h			359	1787	1043	474	976	973	326	327	414	128		122
Volume-to-Cap	acity Ra	atio (X)		0.059	0.417	0.445	0.420	0.44	8 0.448	0.730	0.721	0.595	0.389		0.369
Back of Queue	(Q), ft	/In (95 th percentile)	12.1	182.5	223.2	103.1	184.	8 183.2	268.1	271.3	249.7	66.9		57.5
		eh/ln (95 th percent		0.5	7.2	8.9	4.1	7.3		10.7	10.6	10.0	2.6		2.3
	`	RQ) (95 th percen	tile)	0.10	0.00	0.64	0.30	0.00	_	0.88	0.00	1.39	0.00		0.00
Uniform Delay	· /			14.1	12.6	9.3	12.5	9.6		42.6	42.5	35.8	49.0		48.9
Incremental De		·		0.1	0.7	1.4	0.6	1.5		5.1	4.8	1.9	2.7		2.6
Initial Queue D		·		0.0	0.0	0.0	0.0	0.0	_	0.0	0.0	0.0	0.0		0.0
Control Delay (14.2	13.4	10.7	13.1	11.		47.7	47.3	37.8	51.7		51.6
Level of Service				В	В	B	В	В	B	D	D	_ D	D		D
Approach Dela				12.4		В	11.5	5	В	44.2	2	D	51.7		D
Intersection De	lay, s/ve	eh / LOS				20	0.6						С		
Multimodal Re	eulte				EB			WE	3		NB			SB	
Pedestrian LOS		/I OS		2.8		С	2.3		В	2.9		С	3.0		С
Bicycle LOS So				1.5	-	A	1.4	_	A	1.7		A	0.6		A
,				1.0									0.0		

ORD 2018-7680 Page 66 of 89

		HCS 20	10	Sign	alize	d Inte	ersect	ion Ir	ntern	nedi	ate V	alues	i			
General Inform	nation								In	torso	ction I	nforma	tion	Т		
Agency	iation	KLOA, Inc.							-	uration		0.2		-		
Analyst		NJB		Δ	nalysis	Data	1/24/201	7		rea Ty		Oth				
Jurisdiction		DuPage County			ime Pe		SAT Mid			HF	рс	0.9		→ -		
Urban Street		63rd Street			nalysis		2017	uay	_		s Perio	_	7:00	-4		
Intersection		63rd Street with Wo	nod!		ile Nar		33rd and	1 Wood				u iz	7.00	-		
Project Descrip	tion	Existing SAT Midda				ie į	Joiu and	vvoou	waiu	3AI LA	\.XUS			-		
Project Descrip	lion	Existing SAT Wildus	уг	eakiic	Jui											
Demand Inform	nation					EB			WB			N	В		SB	
Approach Move	ement				L	Т	R	L	Т	R	L	_ 7	R	L	T	R
Demand (v), v	eh/h		_		20	708	441	189	824	6	4	11 3	9 234	1 18	55	17
Signal Informa	tion						5							-		
Cycle, s	110.0	Reference Phase	_	2	-	2 ~	Э	<u>.a</u> }=		2	7			7		
Offset, s	0	Reference Point	\vdash	ogin		2	2	3	2 JU					2		4
Uncoordinated	No	Simult. Gap E/W	-	- 0	Green 3			52.1	19.8	7.6			_	4		
Force Mode	Fixed	Simult. Gap E/W	-		ellow 3			4.5 1.5	4.5 1.5	4.5 1.5			- ∕ ₅	6	7	
1 Gree Wede	TIXCU	Oimait: Gap 14/G		JII I	icu	1.0	1.0	1.0	1.0	1.0	, 10.	.0				
					EB		Т	WB		Т		NB			SB	
Saturation Flo	w / Dela	ay		L	Т	R	L	Т	F	₹	L	Т	R	L	T	R
Lane Width Adj	ustmen	t Factor (f _w)		1.000	1.000	1.000	1.000	1.000	1.0	000	1.000	1.000	1.000	1.000	1.000	1.000
Heavy Vehicle A	/ Vehicle Adjustment Factor (fHV)					0.990	0.990	0.980	1.0	000	1.000	0.971	1.000	0.943	1.000	1.000
Approach Grad	ach Grade Adjustment Factor (fg)					1.000	1.000	1.000	1.0	000 1	1.000	1.000	1.000	1.000	1.000	1.000
Parking Activity	Adjustr	nent Factor (f _p)		1.000	1.000	1.000	1.000	1.000	1.0	000	1.000	1.000	1.000	1.000	1.000	1.000
Bus Blockage A	djustme	ent Factor (fbb)		1.000	1.000	1.000	1.000	1.000	1.0	000	1.000	1.000	1.000	1.000	1.000	1.000
Area Type Adju	stment	Factor (f _a)		1.000	1.000	1.000	1.000	1.000	1.0	000	1.000	1.000	1.000	1.000	1.000	1.000
Lane Utilization	Adjustr	ment Factor (<i>f</i> ∟∪)		1.000	0.952	1.000	1.000	1.000	1.0	000	1.000	1.000	1.000	1.000	1.000	1.000
Left-Turn Adjust	tment F	actor (<i>f</i> _L τ)		0.952	0.000		0.952	0.000)	(0.952	0.000		0.000	0.981	
Right-Turn Adju	stment	Factor (<i>f</i> _{RT})			0.000	0.847		0.997	7 0.9	97		0.000	0.847		0.929	0.933
Left-Turn Pedes	strian A	djustment Factor (fل	ob)	1.000			1.000				1.000			1.000		
Right-Turn Ped	-Bike Ad	djustment Factor (<i>f_{Rj}</i>	ob)			1.000			1.0	00			1.000			1.000
Movement Satu	ıration F	Flow Rate (s), veh/h		1723	3770	1594	1792	3694	2	7	1810	1816	1610	709	2222	706
Proportion of Ve	ehicles /	Arriving on Green (<i>F</i>	?)	0.03	0.63	0.47	0.08	0.70	0.5	52	0.18	0.18	0.18	0.07	0.07	0.07
Incremental De	lay Fac	tor (<i>k</i>)		0.11	0.50	0.50	0.11	0.50	0.5	50	0.18	0.17	0.15	0.15		0.15
Ciamal Timina	/ Massas	mant Crauma		ED		-DT/D	\^/□) I	WDT/	(D.	NIDI		NDT/D	CDI		CDT/D
Signal Timing Lost Time (tL)	/ Iviovei	ment Groups	\dashv	4.0		EBT/R 6.0	4.0		6.0	R	NBL	- '	NBT/R 6.0	SBI	-	SBT/R 6.0
Green Ratio (g/	(C)		\dashv	0.50		0.47	0.5		0.52				0.18			0.07
1.2		low Rate (sp), veh/h/	ln.	614		0.47	719		0.52	-		-	1810		_	0.07
		v Rate (ssh), veh/h/lr	-	012		U	1 13	9	0	+			1010			
Permitted Effec		· , ,		52.	1	0.0	54.	1	0.0	_		_	0.0		_	0.0
Permitted Servi		, - ,		44.2		0.0	41.		0.0	\neg			0.0			0.0
Permitted Queu	ıe Servi	ce Time (<i>g_{ps}</i>), s		0.3			4.9	9								
Time to First Blo	ockage	(<i>g_f</i>), s		0.0		0.0	0.0)	0.0				0.0			0.0
Queue Service	Time B	efore Blockage (<i>gf</i> s),	s													
		tion Flow (<i>s</i> _R), veh/h	_			1594							1610			
	Effectiv	ve Green Time (g _R),	s			19.8							8.5			
Multimodal					EB			WB	1			NB			SB	
Pedestrian F _w /				2.10		0.00	1.55		0.00	_	2.107		0.00	2.22	4	0.00
Pedestrian F _s /				0.00	0	0.109	0.00	00	0.101	1	0.000	0	0.166	0.00	0	0.155
Pedestrian Mcor	ner / M cw	/														
Bicycle c _b / d _b				947.9	_	15.22	1047		12.47	_		_	62.22	137.4		47.70
Bicycle Fw / Fv				-3.6	4	1.02	-3.6	64	0.88		-3.64	1	1.19	-3.6	4	80.0

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

WARNING: The shared-plus-exclusive turn lane solution is an approximation of the HCM method, because more than three lane groups cannot be accommodated. Input data for Percent Turns in Shared Lane are used to specify proportion of turning vehicles in the shared lane.

--- Comments ---

Copyright © 2017 University of Florida, All Rights Reserved.

HCS 2010™ Streets Version 6.90

Generated: 1/27/2017 4:16:37 PM

ORD 2018-7680 Page 68 of 89

		НС	S 201	I0 Sig	naliz	ed Int	ersec	tion	Input	Data					
General Informat	ion								Intersec	tion Info	ormatic	nn.		4141	Į. Ų.
		KLOA, Inc.							Duration,		0.25	,,,		41	
Agency Analyst		NJB		Analye	sis Date	1/24/2	0017		Area Typ		Other		J		<u></u>
Jurisdiction	\rightarrow	DuPage County		Time F		AM	.017		PHF		0.91			w∳e	<u>~</u> }
Urban Street	_	63rd Street			sis Year			_		Doriod	1> 7:0	20			,-
	$\overline{}$			<u> </u>					Analysis		1 / 1.0	JU	- B		-
Intersection		63rd Street with Wo		File Na	ame	losia s	ina vvoc	odward	AMFU.x	us			- 5	ነተሰ	1× C
Project Description	n	Future AM Peak Ho	our											7 171	rı
Demand Informat	tion				EB			WE	3	T	NB			SB	
Approach Moveme	ent			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh	/h			23	775	188	107	87:	3 17	820	83	331	21	38	11
Signal Informatio	n				Γ					_			_		
	30.0	Reference Phase	6	1	70	- 3	≡ ₹			6		<u> </u>	7		
	0	Reference Point	Begin		7	7	, <u> </u>		17				2		4
	No	Simult. Gap E/W	On	Green		3.9	53.3	40.		0.0	_	_	4		l
	ixed	Simult. Gap L/W	On	Yellow Red	1.0	0.0	4.5 1.5	4.5 1.5	4.5 1.5	0.0		5	6	7	
T GIGG WIGGG	ixou	Cirruit. Cup 14/C	OII	rtou	1.0	0.0	1.0	1.0	1.0	0.0					
Traffic Information	n				EB			WB			NB			SB	
Approach Moveme	ent			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh/h	า			23	775	188	107	873	17	820	83	331	21	38	11
Initial Queue (Qb),	veh/l	า		0	0	0	0	0	0	0	0	0	0	0	0
Base Saturation F	low R	ate (<i>s₀</i>), veh/h		1900	2000	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Parking (Nm), man	ı/h				None			None	;		None			None	
Heavy Vehicles (P	PHV), %	6		0	4	5	2	4		2	5	4		0	
Ped / Bike / RTOR	R, /h			0	0	0	0	0	0	0	0	0	0	0	0
Buses (Nb), buses	/h			0	0	0	0	0	0	0	0	0	0	0	0
Arrival Type (AT)				3	4	3	3	4	3	3	3	3	3	3	3
Upstream Filtering	g (<i>I</i>)			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (W), ft	t			12.0	12.0	12.0	12.0	12.0		12.0	12.0	12.0		12.0	
Turn Bay Length, t	ft			125	0	350	340	0		305	0	180		0	
Grade (Pg), %					0			0			0			0	
Speed Limit, mi/h				40	40	40	40	40	40	30	30	30	25	25	25
Phase Informatio	n			EBL		EBT	WBI		WBT	NBL		NBT	SBL		SBT
Maximum Green (or Phase Split s		13.0	_	52.0	16.0		55.0	48.0	_	48.0	022	_	14.0
Yellow Change Int				3.0		4.5	3.0	_	4.5	4.5	_	4.5			4.5
Red Clearance Int		• •		1.0		1.5	1.0		1.5	1.5		1.5		$\overline{}$	1.5
Minimum Green (· ,		3		15	3		15	3		8	3		8
Start-Up Lost Time				2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Extension of Effec				2.0	_	2.0	2.0	_	2.0	2.0		2.0	2.0		2.0
Passage (<i>PT</i>), s				3.0		7.0	3.0		7.0	3.0	-	4.0	3.0		4.0
Recall Mode				Off		Min	Off		Min	Off		Off	Off		Off
Dual Entry				Yes		Yes	Yes	;	Yes	No		Yes	No		Yes
Walk (<i>Walk</i>), s				0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0
Pedestrian Cleara	nce T	īme (<i>PC</i>), s		0.0		0.0	0.0		0.0	0.0		0.0	0.0	\perp	0.0
Multimodal Inforr	matio	n			EB			WB			NB			SB	
		Walk / Corner Radi	us	0	No	25	0	No	25	0	No	25	0	No	25
Walkway / Crossw				9.0	12	0	9.0	12	0	9.0	12	0	9.0	12	0
Street Width / Islan				0	0	No	0	0	No	0	0	No	0	0	No
Width Outside / Bi	ke La	ne / Shoulder, ft		12	5.0	2.0	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0
Pedestrian Signal	/ Occ	upied Parking		No		0.50	No		0.50	No		0.50	No		0.50

ORD 2018-7680 Page 69 of 89

	HCS 2010	July	u112	.cu 11		, J. (101)		Juito U	MIIIIII	ar y				
General Information								Intersec	tion Info	ormatic	n	Į	작가수 :	AND REAL PROPERTY.
Agency	KLOA, Inc.							Duration	, h	0.25			4 1	
Analyst	NJB	Ana	alysi	s Date	1/24/2	017		Area Typ	e	Other		<u>ئ</u> _ ب		
Jurisdiction	DuPage County		_	eriod	AM			PHF		0.91		∳	w∮e	=
Urban Street	63rd Street	Ana	alysi	s Year	2018			Analysis	Period	1> 7:0	00	·		· ·
Intersection	63rd Street with Woody		Na		_	nd Woo	dwar	d AMFU.>					ጜ ል	,'
Project Description	Future AM Peak Hour											ħ	4144	7 + 1
Demand Information		$\overline{}$		EB		T	W	'B	1	NB		T	SB	
Approach Movement				Т	R	L	Т	R	L	Т	R		Т	R
Demand (v), veh/h		23	3	775	188	107	87	73 17	820	83	331	21	38	11
Signal Information					7		. 1		-					
	Reference Phase	6		10	- }	■ ₹	=	211				7		
Cycle, s 130.0		gip		7	7	 -3	20	117				2		4
Offset, s 0 Uncoordinated No			en		3.9	53.3	40		0.0		_ .	<u> </u>		
Force Mode Fixed	<u> </u>	On Yell	=	3.0 1.0	0.0	4.5 1.5	4.5		0.0		^ _	Y	7	
Force Mode Fixed	Simuit. Gap N/S	л кес	<u>.</u>	1.0	10.0	1.5	1.3) [1.5	10.0		5	6		
Timer Results		E	EBL		EBT	WBI	L	WBT	NBI	.	NBT	SBL		SBT
Assigned Phase			5		2	1		6			8			4
Case Number			1.1		3.0	1.1		4.0			9.0			12.0
Phase Duration, s		1	7.1		59.3	11.0		63.2		1	46.2		\neg	13.5
Change Period, (Y+R	c), S	4	4.0		6.0	4.0		6.0			6.0			6.0
Max Allow Headway (<i>MAH</i>), s	4	4.0		0.0	4.0		0.0			5.1		\top	5.2
Queue Clearance Time	e (g s), s	:	3.0			6.8					36.8			4.7
Green Extension Time	(g e), s	(0.0		0.0	0.2		0.0			3.4		$\neg \vdash$	0.1
Phase Call Probability		1	.00			1.00					1.00			0.94
Max Out Probability		0	.00			0.04	-				1.00		工	1.00
Movement Group Res	sults	_		EB			WE	3		NB			SB	
Approach Movement			т	T	R	L	T	R	1	T	R	1	T	R
Assigned Movement		5	\dashv	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate (v	() veh/h	25	_	852	207	118	491		496	497	364	40		37
Adjusted Saturation Flo	· · · · · · · · · · · · · · · · · · ·	181	_	1831	1533	1774	182		1774	1781	1548	1847	=	1793
Queue Service Time (1.0	-	19.9	5.7		22.5		34.8	34.7	25.4	2.7		2.5
	<i>a - </i>	1.1	_			4.8				~ · · · /				
Cycle Queue Clearance	e Time (a c) s	1 ()	19.9		4.8	_			_	25.4	27		2.5
Cycle Queue Clearanc	e Time (<i>g c</i>), s	0.4	_	19.9 0.41	5.7	4.8	22.	5 22.7	34.8	34.7	25.4 0.36	2.7 0.06		0.06
Green Ratio (g/C)	e Time (<i>g c</i>), s	0.4	3	0.41	5.7 0.72	4.8 0.48	22.5 0.4	5 22.7 4 0.44	34.8 0.31	34.7 0.31	0.36	0.06		0.06
Green Ratio (g/C) Capacity (c), veh/h		0.4	3	0.41 1501	5.7 0.72 1103	4.8 0.48 316	22.5 0.44 804	22.7 0.44 799	34.8 0.31 549	34.7 0.31 551	0.36 562	0.06 107		0.06 104
Green Ratio (g/C) Capacity (c), veh/h Volume-to-Capacity Ra	atio (X)	0.4 24 0.10	.3 4 03	0.41 1501 0.567	5.7 0.72 1103 0.187	4.8 0.48 316 0.372	22.5 0.44 804 0.61	22.7 4 0.44 799 0 0.610	34.8 0.31 549 0.903	34.7 0.31 551 0.902	0.36 562 0.647	0.06 107 0.379		0.06 104 0.353
Green Ratio (<i>g/C</i>) Capacity (<i>c</i>), veh/h Volume-to-Capacity Ra Back of Queue (<i>Q</i>), ft	atio (X) /In (95 th percentile)	0.4 24 0.10 20.	.3 4 03 .2	0.41 1501 0.567 314.9	5.7 0.72 1103 0.187 81.1	4.8 0.48 316 0.372 91.9	22.5 0.44 804 0.61 351	22.7 4 0.44 4 799 0 0.610 343	34.8 0.31 549 0.903 629.4	34.7 0.31 551 0.902 644.5	0.36 562 0.647 391.5	0.06 107 0.379 64.9		0.06 104 0.353 56.4
Green Ratio (g/C) Capacity (c), veh/h Volume-to-Capacity Ra Back of Queue (Q), ft Back of Queue (Q), veh/h	atio (X) /In (95 th percentile) eh/In (95 th percentile)	0.4 24 0.10 20.	.3 4 03 .2	0.41 1501 0.567 314.9 12.2	5.7 0.72 1103 0.187 81.1 3.1	4.8 0.48 316 0.372 91.9 3.6	22.5 0.44 804 0.61 351 13.6	22.7 4 0.44 799 0 0.610 343 6 13.7	34.8 0.31 549 0.903 629.4 24.8	34.7 0.31 551 0.902 644.5 24.8	0.36 562 0.647 391.5 15.2	0.06 107 0.379 64.9 2.5		0.06 104 0.353 56.4 2.3
Green Ratio (g/C) Capacity (c), veh/h Volume-to-Capacity Ra Back of Queue (Q), ft Back of Queue (Q), volume Queue Storage Ratio (atio (X) /In (95 th percentile) eh/In (95 th percentile) RQ) (95 th percentile)	0.4 24 0.10 20. 0.8	-3 4 03 .2 8 6	0.41 1501 0.567 314.9 12.2 0.00	5.7 0.72 1103 0.187 81.1 3.1 0.23	4.8 0.48 316 0.372 91.9 3.6 0.27	22.5 0.44 804 0.61 351 13.6 0.00	22.7 4 0.44 4 799 0 0.610 343 6 13.7 0 0.00	34.8 0.31 549 0.903 629.4 24.8 2.06	34.7 0.31 551 0.902 644.5 24.8 0.00	0.36 562 0.647 391.5 15.2 2.17	0.06 107 0.379 64.9 2.5 0.00		0.06 104 0.353 56.4 2.3 0.00
Green Ratio (g/C) Capacity (c), veh/h Volume-to-Capacity Ra Back of Queue (Q), ft Back of Queue (Q), veh/h Queue Storage Ratio (Uniform Delay (d 1), s	atio (X) /In (95 th percentile) eh/In (95 th percentile) RQ) (95 th percentile) //veh	0.4 24 0.10 20. 0.8 0.1	.3 4 03 .2 8 6	0.41 1501 0.567 314.9 12.2 0.00 21.9	5.7 0.72 1103 0.187 81.1 3.1 0.23 5.9	4.8 0.48 316 0.372 91.9 3.6 0.27 21.2	22.5 0.44 804 0.61 351 13.6 0.00	22.7 4 0.44 4 799 0 0.610 343 3 13.7 0 0.00 7 20.0	34.8 0.31 549 0.903 629.4 24.8 2.06 43.0	34.7 0.31 551 0.902 644.5 24.8 0.00 43.0	0.36 562 0.647 391.5 15.2 2.17 34.5	0.06 107 0.379 64.9 2.5 0.00 59.0		0.06 104 0.353 56.4 2.3 0.00 58.9
Green Ratio (g/C) Capacity (c), veh/h Volume-to-Capacity Ra Back of Queue (Q), ft Back of Queue (Q), vence of Queue (Q), vence of Queue (Q), vence of Queue Storage Ratio (Q) Uniform Delay (d 1), so Incremental Delay (d 2	atio (X) /In (95 th percentile) eh/In (95 th percentile) RQ) (95 th percentile) //veh e), s/veh	0.4 24 0.10 20. 0.8 0.1 22.	.3 4 03 .2 8 6 .9	0.41 1501 0.567 314.9 12.2 0.00 21.9 1.6	5.7 0.72 1103 0.187 81.1 3.1 0.23 5.9 0.4	4.8 0.48 316 0.372 91.9 3.6 0.27 21.2	22.5 0.44 804 0.61 351 13.6 0.00 19.1	22.7 4 0.44 4 799 0 0.610 343 6 13.7 0 0.00 7 20.0	34.8 0.31 549 0.903 629.4 24.8 2.06 43.0	34.7 0.31 551 0.902 644.5 24.8 0.00 43.0	0.36 562 0.647 391.5 15.2 2.17 34.5 2.8	0.06 107 0.379 64.9 2.5 0.00 59.0		0.06 104 0.353 56.4 2.3 0.00 58.9 2.9
Green Ratio (g/C) Capacity (c), veh/h Volume-to-Capacity Ra Back of Queue (Q), ft Back of Queue (Q), ve Queue Storage Ratio (Uniform Delay (d 1), s Incremental Delay (d 2 Initial Queue Delay (d	atio (X) /In (95 th percentile) eh/In (95 th percentile) RQ) (95 th percentile) //veh 2), s/veh 3), s/veh	0.4 24 0.10 20. 0.8 0.1 22. 0.2	.3 4 03 .2 8 6 .9 2 0	0.41 1501 0.567 314.9 12.2 0.00 21.9 1.6 0.0	5.7 0.72 1103 0.187 81.1 3.1 0.23 5.9 0.4 0.0	4.8 0.48 316 0.372 91.9 3.6 0.27 21.2 0.7 0.0	22.5 0.44 804 0.61 351 13.6 0.00 19.7 3.4	22.7 4 0.44 4 799 0 0.610 343 6 13.7 0 0.00 7 20.0 3.5 0.0	34.8 0.31 549 0.903 629.4 24.8 2.06 43.0 17.7	34.7 0.31 551 0.902 644.5 24.8 0.00 43.0 17.4 0.0	0.36 562 0.647 391.5 15.2 2.17 34.5 2.8 0.0	0.06 107 0.379 64.9 2.5 0.00 59.0 3.1		0.06 104 0.353 56.4 2.3 0.00 58.9 2.9 0.0
Green Ratio (g/C) Capacity (c), veh/h Volume-to-Capacity Ra Back of Queue (Q), ft Back of Queue (Q), ven Queue Storage Ratio (Uniform Delay (d 1), s Incremental Delay (d 2 Initial Queue Delay (d), s/ven	atio (X) /In (95 th percentile) eh/In (95 th percentile) RQ) (95 th percentile) //veh 2), s/veh 3), s/veh eh	0.4 24 0.10 20. 0.8 0.1 22. 0.2 0.0	.3 4 03 .2 8 6 .9 2 0	0.41 1501 0.567 314.9 12.2 0.00 21.9 1.6 0.0 23.4	5.7 0.72 1103 0.187 81.1 3.1 0.23 5.9 0.4 0.0 6.3	4.8 0.48 316 0.372 91.9 3.6 0.27 21.2 0.7 0.0 21.9	22.5 0.44 804 0.61 351 13.6 0.00 19.7 3.4 0.0 23.7	22.7 4 0.44 4 799 0 0.610 343 6 13.7 0 0.00 7 20.0 - 3.5 0 0.0 1 23.4	34.8 0.31 549 0.903 629.4 24.8 2.06 43.0 17.7 0.0	34.7 0.31 551 0.902 644.5 24.8 0.00 43.0 17.4 0.0 60.4	0.36 562 0.647 391.5 15.2 2.17 34.5 2.8	0.06 107 0.379 64.9 2.5 0.00 59.0 3.1 0.0 62.1		0.06 104 0.353 56.4 2.3 0.00 58.9 2.9 0.0 61.8
Green Ratio (g/C) Capacity (c), veh/h Volume-to-Capacity Ra Back of Queue (Q), ft Back of Queue (Q), ven/h Queue Storage Ratio (Uniform Delay (d 1), so Incremental Delay (d 2 Initial Queue Delay (d Control Delay (d), s/ven/h	atio (X) /In (95 th percentile) eh/In (95 th percentile) RQ) (95 th percentile) //veh e), s/veh 3), s/veh eh	0.4 24 0.10 20. 0.8 0.1 22. 0.2 0.2 23.	3 4 1 2 2 2 3 3 6 6 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.41 1501 0.567 314.9 12.2 0.00 21.9 1.6 0.0	5.7 0.72 1103 0.187 81.1 3.1 0.23 5.9 0.4 0.0 6.3 A	4.8 0.48 316 0.372 91.9 3.6 0.27 21.2 0.7 0.0 21.9 C	22.5 0.44 804 0.61 351 13.6 0.00 19.7 3.4 0.0 23.4	22.7 4 0.44 4 799 0 0.610 343 6 13.7 0 0.00 7 20.0 4 3.5 0.0 1 23.4 C	34.8 0.31 549 0.903 629.4 24.8 2.06 43.0 17.7 0.0 60.7 E	34.7 0.31 551 0.902 644.5 24.8 0.00 43.0 17.4 0.0 60.4 E	0.36 562 0.647 391.5 15.2 2.17 34.5 2.8 0.0 37.2 D	0.06 107 0.379 64.9 2.5 0.00 59.0 3.1 0.0 62.1 E		0.06 104 0.353 56.4 2.3 0.00 58.9 2.9 0.0 61.8
Green Ratio (g/C) Capacity (c), veh/h Volume-to-Capacity Ra Back of Queue (Q), ft Back of Queue (Q), ve Queue Storage Ratio (Uniform Delay (d 1), s Incremental Delay (d 2 Initial Queue Delay (d Control Delay (d), s/ve	atio (X) /In (95 th percentile) eh/In (95 th percentile) RQ) (95 th percentile) //veh 2), s/veh 3), s/veh eh	0.4 24 0.10 20. 0.8 0.1 22. 0.2 0.2 23.	.3 4 03 .2 8 6 .9 2 0	0.41 1501 0.567 314.9 12.2 0.00 21.9 1.6 0.0 23.4	5.7 0.72 1103 0.187 81.1 3.1 0.23 5.9 0.4 0.0 6.3	4.8 0.48 316 0.372 91.9 3.6 0.27 21.2 0.7 0.0 21.9 C	22.5 0.44 804 0.61 351 13.6 0.00 19.7 3.4 0.0 23.4	22.7 4 0.44 4 799 0 0.610 343 6 13.7 0 0.00 7 20.0 - 3.5 0 0.0 1 23.4	34.8 0.31 549 0.903 629.4 24.8 2.06 43.0 17.7 0.0	34.7 0.31 551 0.902 644.5 24.8 0.00 43.0 17.4 0.0 60.4 E	0.36 562 0.647 391.5 15.2 2.17 34.5 2.8 0.0 37.2 D	0.06 107 0.379 64.9 2.5 0.00 59.0 3.1 0.0 62.1		0.06 104 0.353 56.4 2.3 0.00 58.9 2.9 0.0 61.8
Green Ratio (g/C) Capacity (c), veh/h Volume-to-Capacity Ra Back of Queue (Q), ft Back of Queue (Q), ven/h Queue Storage Ratio (Uniform Delay (d 1), s Incremental Delay (d 2 Initial Queue Delay (d Control Delay (d), s/ven/h Level of Service (LOS) Approach Delay, s/ven/h Intersection Delay, s/ven/h	atio (X) /In (95 th percentile) eh/In (95 th percentile) RQ) (95 th percentile) //veh 2), s/veh 3), s/veh eh	0.4 24 0.10 20. 0.8 0.1 22. 0.2 0.2 23.	3 4 1 2 2 2 3 3 6 6 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.41 1501 0.567 314.9 12.2 0.00 21.9 1.6 0.0 23.4 C	5.7 0.72 1103 0.187 81.1 3.1 0.23 5.9 0.4 0.0 6.3 A	4.8 0.48 316 0.372 91.9 3.6 0.27 21.2 0.7 0.0 21.9 C	22.5 0.44 804 0.61 351 13.6 0.00 19.7 3.4 0.0 C	5 22.7 4 0.44 4 799 0 0.610 343 5 13.7 0 0.00 7 20.0 3.5 0.0 1 23.4 C	34.8 0.31 549 0.903 629.4 24.8 2.06 43.0 17.7 0.0 60.7 E	34.7 0.31 551 0.902 644.5 24.8 0.00 43.0 17.4 0.0 60.4 E	0.36 562 0.647 391.5 15.2 2.17 34.5 2.8 0.0 37.2 D	0.06 107 0.379 64.9 2.5 0.00 59.0 3.1 0.0 62.1 E		0.06 104 0.353 56.4 2.3 0.00 58.9 2.9 0.0 61.8
Green Ratio (g/C) Capacity (c), veh/h Volume-to-Capacity Ra Back of Queue (Q), ft Back of Queue (Q), ve Queue Storage Ratio (Uniform Delay (d 1), s Incremental Delay (d 2 Initial Queue Delay (d Control Delay (d), s/ve Level of Service (LOS) Approach Delay, s/veh	atio (X) /In (95 th percentile) eh/In (95 th percentile) RQ) (95 th percentile) //veh 2), s/veh 3), s/veh eh / LOS	0.4 24 0.10 20. 0.1 22. 0.2 0.2 23. C	3 4 1 2 2 2 3 3 6 6 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.41 1501 0.567 314.9 12.2 0.00 21.9 1.6 0.0 23.4	5.7 0.72 1103 0.187 81.1 3.1 0.23 5.9 0.4 0.0 6.3 A	4.8 0.48 316 0.372 91.9 3.6 0.27 21.2 0.7 0.0 21.9 C	22.5 0.44 804 0.61 351 13.6 0.00 19.7 3.4 0.0 C	5 22.7 4 0.44 4 799 0 0.610 343 5 13.7 0 0.00 7 20.0 3.5 0.0 1 23.4 C	34.8 0.31 549 0.903 629.4 24.8 2.06 43.0 17.7 0.0 60.7 E	34.7 0.31 551 0.902 644.5 24.8 0.00 43.0 17.4 0.0 60.4 E	0.36 562 0.647 391.5 15.2 2.17 34.5 2.8 0.0 37.2 D	0.06 107 0.379 64.9 2.5 0.00 59.0 3.1 0.0 62.1 E	SB	0.06 104 0.353 56.4 2.3 0.00 58.9 2.9 0.0 61.8

Generated: 1/30/2017 4:15:10 PM

ORD 2018-7680 Page 70 of 89

		HCS 20	10	Sig	jna	lized	d Inte	ersect	ion l	Inte	erme	diate	e Va	lues	;				
																_			
General Information												rsection							
Agency		KLOA, Inc.										ition, h		0.2		-1			
Analyst	\rightarrow	NJB			_	alysis -	\rightarrow	1/24/201	17		_	Туре		Oth		→			
Jurisdiction		DuPage County			-	ne Per	_	AM			PHF			0.9		-4			
Urban Street	_	33rd Street			_	alysis	\rightarrow	2018				ysis P		1>	7:00	7			
Intersection	\rightarrow	33rd Street with Wo		W	File	Nam	e (63rd and	ooW b	dwa	rd AM	FU.xu	S			_			
Project Description) F	Future AM Peak Ho	our			_	_	_	_		_	_		_	_		_		
Demand Informati	ion						EB			V	VB			N	 В		S	В	
Approach Moveme	-				1		T	R	ī		T	R		7		L		Г .	R
Demand (v), veh/h					2	_	775	188	107	+-	73	17	820	_	_	_		8	11
2 0 111 (7); 7 0 111																			
Signal Information	n						2	2	. 5			211	П			-			
Cycle, s 130	0.0 I	Reference Phase		6				2	≓ *	2	517				—	- ♦.			4
Offset, s	0 I	Reference Point	В	egin	Gre	en 3	1	3.9	53.3	40		7.5	0.0		- 0	X 2			4
Uncoordinated N		Simult. Gap E/W	(On		low 3			4.5	4.		4.5	0.0		<i>></i>	\Rightarrow			
Force Mode Fix	xed 3	Simult. Gap N/S	(On	Re	d 1	.0	0.0	1.5	1.		1.5	0.0		5	6		7	
a				<u>.</u>	_	EB		١.	WI	-		₩.	_	NB		.	SE	3	
Saturation Flow / I				L	+	T	R	L	T	_	R	L		T	R	L	T		R
Lane Width Adjustn			_	1.00	_	0.962	1.000		_	\rightarrow	1.000	-	$\overline{}$	1.000	1.000	1.000	1.00	_	1.000
	Vehicle Adjustment Factor (f_{HV}) ach Grade Adjustment Factor (f_g)						0.952			_	1.000	_	_	0.952	0.962	0.952	1.00	_	1.000
	ach Grade Adjustment Factor (fg)						1.000			_	1.000	_	$\overline{}$	1.000	1.000	1.000	1.00	-	1.000
Parking Activity Adj				1.00	_	1.000	1.000			_	1.000		_	1.000	1.000	1.000	1.00	_	1.000
Bus Blockage Adjus			_	1.00	_	1.000	1.000			_	1.000	_	$\overline{}$	1.000	1.000	1.000	1.00	-	1.000
Area Type Adjustm		. ,		1.00	-	1.000	1.000		-	\rightarrow	1.000		-	1.000	1.000	1.000	1.00	$\overline{}$	1.000
Lane Utilization Adj				1.00	_).952	1.000			_	1.000	_	_	1.000	1.000	1.000	1.00	_	1.000
Left-Turn Adjustme				0.95	_	0.000		0.952	-	\rightarrow		0.9	_	0.000		0.000	0.97	-	
Right-Turn Adjustm		· · · · · ·	_	L	-	0.000	0.847		0.99	93	0.993	_	_	0.000	0.847	—	0.93	38 0).944
Left-Turn Pedestria				1.00	00			1.000	-	4		1.0	00			1.000		_	
Right-Turn Ped-Bik			_	L.	_		1.000	_	-	\rightarrow	1.000	_	+		1.000	.	ļ	-	1.000
Movement Saturation		. , ,	_	181	-	3662	1533		357	\rightarrow	70	177	_	1781	1548	1056	199	_	593
Proportion of Vehic			?)	0.0	_	0.55	0.41	0.05	0.5	_	0.44	0.3	_	0.31	0.31	0.06	0.0	-	0.06
Incremental Delay I	Facto	or (<i>k</i>)		0.1	1	0.50	0.50	0.11	0.5	0	0.50	0.4	1	0.41	0.24	0.15		(0.15
Signal Timing / Mo	ovem	ent Groups		-	BL	F	BT/R	WE	RI .	\٨/	BT/R		NBL	1	NBT/R	SBI		SR.	T/R
Lost Time (t_L)	OVEIII	ent Groups	_	_	I.O	+-	6.0	4.0	_		3.0	1	NDL		6.0	OB		6.	
Green Ratio (g/C)				_	.43		0.41	0.4	_		.44				0.31			0.0	
Permitted Saturatio	on Flo	w Rate (s _o) veh/h	/In	_	84		0	64	_		0	_		_	1774		_	0.0	
Shared Saturation I		· · · ·	-		J 1			04	_		-								
Permitted Effective		, ,		5	3.3	+	0.0	55.	2	(0.0				0.0		_	0.	.0
Permitted Service 1		(5.)		_	2.6	_	0.0	33.	\rightarrow		0.0				0.0			0.	
Permitted Queue S		,).9		-	4.9							-			<u> </u>	
Time to First Blocks		(3:):		_	0.0		0.0	0.0		(0.0				0.0			0.	.0
Queue Service Tim		- ,-	s															<u> </u>	
Protected Right Sat			_			1	1533								1548				
Protected Right Effe			_			_	40.2								7.0				
Multimodal		(3)				EB			W	В				NB			SE	3	
Pedestrian F _w / F _v				2.	107	_	0.00	1.5	-		.00	2	.107	T	0.00	2.22	_	0.0	00
Pedestrian F _s / F _{dela}	lay			_	000	_).125	0.00	_		121	_	.000		0.172	0.00	_	0.1	
Pedestrian Mcorner /	Mcw							-0											
	M _{cw}			82	0.05	2	2.62	880.	.32	20	0.37			'	72.19	115.4	12	57.	71

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

WARNING: The shared-plus-exclusive turn lane solution is an approximation of the HCM method, because more than three lane groups cannot be accommodated. Input data for Percent Turns in Shared Lane are used to specify proportion of turning vehicles in the shared lane.

--- Comments ---

Copyright © 2017 University of Florida, All Rights Reserved.

HCS 2010™ Streets Version 6.90

Generated: 1/30/2017 4:15:10 PM

ORD 2018-7680 Page 72 of 89

Commar Information Agency KLOA, Inc. Analysis Date Information Durager County Time Period Part Part Part Durager County Time Period Part Part Part Durager County Time Period Part Part Part Durager County Time Period Part			НС	CS 201	I0 Sig	naliz	ed Int	ersec	tion	Input	Data					
Major Majo	Gonoral Inform	nation								Intorcoc	tion Inf	ormatic	n e	T	4741	يا دل
Analysis Nulls		iation	I/I OA Ino									v)II	- 1		
Urban Stroet					Analye	io Doto	1/24/2	017						_*		£
Urban Street	<u> </u>		-		-		_	.017			U				wĬ.	->- <u>}-</u>
Intersection									_		Dariad		20	===		<u>-</u>
Project Description	-		-					d \\/		-		1> 7:0	JU	-		· ·
Demand Information		4:	<u> </u>		File Na	ame	63rd a	ina vvoc	odward	I PMFU.	us			- 5	ጎተሰ	1× C
Approach Movement	Project Descrip	tion	Future PM Peak H	our											7 171	rı
Demand (Demand Inform	nation				EB			WE	3		NB			SB	
Signal Information	Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Cycle, s 130.0 Reference Phase 2 Offset, s 0 Reference Phase 1 Offset 30.0 5.7 67.1 18.9 9.3 0.0 0.	Demand (v), v	eh/h			24	977	713	292	84	7 5	339	52	193	22	143	16
Cycle, s 130.0 Reference Phase 2 Offset, s 0 Reference Phase 1 Offset 30.0 5.7 67.1 18.9 9.3 0.0 0.	Signal Informa	tion				T	F .	_	.		_					
Offset, s			Poforonco Phaco	2	1	7 /	- 3	≡₹	Ħ		6		<u> </u>	7		
Uncoordinated No Simult. Gap EM On Yellow 3.0 3.0 4.5 4.5 1.5 1.0 O O O O O O O O O			-	_	1	2	7	, 	20	17				\rightarrow 2		4
Force Mode Fixed Simult. Gap N/S On Red 1.0 1.0 1.5 1.5 1.5 0.0 O O O O O O O O O			-										_	<u> </u>		
Traffic Information			<u> </u>	_		-							^		7	
Approach Movement L T R L T R L T R L T R R L T R R L T R R R R R R R R R	Force Mode	rixea	Simult. Gap N/S	On	Reu	1.0	1.0	1.5	1.5	1.5	10.0		5	6	·	
Demand (y), veh/h 0 0 0 0 0 0 0 0 0	Traffic Informa	ition				EB			WB			NB			SB	
Initial Queue (Qo), veh/h	Approach Move	ement			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Base Saturation Flow Rate (so,) veh/h 1900 2000 1900	Demand (v), ve	h/h			24	977	713	292	847	5	339	52	193	22	143	16
Base Saturation Flow Rate (so,) veh/h 1900 2000 1900	Initial Queue (C	(β), veh/	h		0	0	0	0	0	0	0	0	0	0	0	0
Heavy Vehicles (Pinv), %	Base Saturation	n Flow F	Rate (<i>s₀</i>), veh/h		1900	2000	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Heavy Vehicles (Pinv), %	Parking (N _m), m	nan/h				None			None	:		None			None	
Ped / Bike / RTOR, /h			%		0	1	0	1	1		1	2	2		0	
Arrival Type (AT) 3 4 3 3 4 3 1 0 1 0 1 0	Ped / Bike / RT	OR, /h			0	0	0	0	0	0	0	0	0	0	0	0
Upstream Filtering (f)	Buses (N _b), bus	ses/h			0	0	0	0	0	0	0	0	0	0	0	0
Lane Width (W), ft 12.0 </td <td>Arrival Type (A7</td> <td>Γ)</td> <td></td> <td></td> <td>3</td> <td>4</td> <td>3</td> <td>3</td> <td>4</td> <td>3</td> <td>3</td> <td>3</td> <td>3</td> <td>3</td> <td>3</td> <td>3</td>	Arrival Type (A7	Γ)			3	4	3	3	4	3	3	3	3	3	3	3
Turn Bay Length, ft	Upstream Filter	ing (/)			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turn Bay Length, ft	Lane Width (W)), ft			12.0	12.0	12.0	12.0	12.0		12.0	12.0	12.0		12.0	
Phase Information EBL EBL EBT WBL WBT NBL NBT SBL SBT Maximum Green (Gmax) or Phase Split, s 13.0 48.0 30.0 65.0 31.0 31.0 21.0 Yellow Change Interval (Y), s 3.0 4.5 3.0 4.5					125	0	350	340	0		305	0	180		0	
Phase Information EBL EBL EBT WBL WBT NBL NBT SBL SBT Maximum Green (Gmax) or Phase Split, s 13.0 48.0 30.0 65.0 31.0 31.0 21.0 Yellow Change Interval (Y), s 3.0 4.5 3.0 4.5	Grade (Pg), %					0			0			0			0	
Maximum Green (Gmax) or Phase Split, s 13.0 48.0 30.0 65.0 31.0 31.0 21.0 Yellow Change Interval (Y), s 3.0 4.5 3.0 4.5 4.5 4.5 4.5 Red Clearance Interval (Rc), s 1.0 1.5 1.0 1.5 1.5 1.5 1.5 1.5 Minimum Green (Gmin), s 3 15 3 15 3 8 3 8 Start-Up Lost Time (It), s 2.0		i/h			40	40	40	40	40	40	30	30	30	25	25	25
Maximum Green (Gmax) or Phase Split, s 13.0 48.0 30.0 65.0 31.0 31.0 21.0 Yellow Change Interval (Y), s 3.0 4.5 3.0 4.5 4.5 4.5 4.5 Red Clearance Interval (Rc), s 1.0 1.5 1.0 1.5 1.5 1.5 1.5 1.5 Minimum Green (Gmin), s 3 15 3 15 3 8 3 8 Start-Up Lost Time (It), s 2.0	Dhasa Infarms	41			EDI	_	CDT	WDI		WDT	NDI		NDT	CDI		CDT
Yellow Change Interval (Y), s 3.0 4.5 3.0 4.5 4.5 4.5 4.5 Red Clearance Interval (Rc), s 1.0 1.5 1.0 1.5 1.5 1.5 1.5 Minimum Green (Gmin), s 3 15 3 15 3 8 3 8 Start-Up Lost Time (It), s 2.0) or Phase Split s			_						_		SBL		$\overline{}$
Red Clearance Interval (Rc), s			, ·						_			_			\rightarrow	
Minimum Green (Gmin), s 3 15 3 15 3 8 3 8 Start-Up Lost Time (It), s 2.0 <td< td=""><td></td><td></td><td>• •</td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td></td<>			• •						_						-	
Start-Up Lost Time (lt), s 2.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 6.0 6.0 6.0 6.0 6.0 7.0 9.0 7.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0<					_			_			_			3	\rightarrow	
Extension of Effective Green (e), s															-	-
Passage (PT), s 3.0 7.0 3.0 7.0 3.0 4.0 3.0 4.0 Recall Mode Off Min Off Min Off						_			-							
Recall Mode Off Min Off Min Off Off Off Off Off			(-), -						_			-				
Walk (Walk), s 0.0					Off		Min		_	Min	Off					
Multimodal Information EB WB NB SB 85th % Speed / Rest in Walk / Corner Radius 0 No 25 0 No 0 0 <	Dual Entry				Yes		Yes	Yes		Yes	No		Yes	No	$\neg \vdash$	Yes
Multimodal Information EB WB NB SB 85th % Speed / Rest in Walk / Corner Radius 0 No 25 0 No 0 0 <						_			_			_				
85th % Speed / Rest in Walk / Corner Radius 0 No 25 0 No 25 0 No 25 0 No 25 Walkway / Crosswalk Width / Length, ft 9.0 12 0 9.0 12 0 9.0 12 0 9.0 12 0 9.0 12 0 9.0 12 0 0 No 0	Pedestrian Clea	arance ⁻	Time (<i>PC</i>), s		0.0		0.0	0.0		0.0	0.0		0.0	0.0		0.0
85th % Speed / Rest in Walk / Corner Radius 0 No 25 0 No 25 0 No 25 0 No 25 Walkway / Crosswalk Width / Length, ft 9.0 12 0 9.0 12 0 9.0 12 0 9.0 12 0 9.0 12 0 9.0 12 0 0 No 0	Multimodal Inf	ormatic	on.			ED			\A/D			NID			Q.D.	
Walkway / Crosswalk Width / Length, ft 9.0 12 0 9.0 12 0 9.0 12 0 9.0 12 0 9.0 12 0 9.0 12 0 9.0 12 0 9.0 12 0 9.0 12 0 No 0 No 0 No 0 No 0 No 0 No				ius	0		25	0		25	0	_	25	0	_	25
Street Width / Island / Curb 0 0 No 0 No 0 No 0 No 0 No 0 No	<u> </u>							_	_						_	_
												-	-			-
Width Outside / Bike Lane / Shoulder, ft					12	5.0	2.0	12	5.0	2.0	12	5.0	2.0	12	5.0	2.0
Pedestrian Signal / Occupied Parking No 0.50 No 0.50 No 0.50 No 0.50																

ORD 2018-7680 Page 73 of 89

		Signali											
General Information						T	Intersect	ion Info	Į.	4741	Ja l <u>a</u>		
Agency	KLOA, Inc.					1	Duration,	h	0.25			4 1	_
Analyst	NJB	Analys	sis Date	1/24/2	017		Area Typ	e = ====	Other		- A		
Jurisdiction	DuPage County	Time F		PM			PHF		0.97		∳	w∳E	=
Urban Street	63rd Street	Analys	sis Year	2018			Analysis	Period	1> 7:0	00	\$ ~		•
Intersection	63rd Street with Woodw				nd Woc		I PMFU.x					548	
Project Description	Future PM Peak Hour	1		100.20							ħ	4144	7 4
Demand Information		T	EB		Ţ	WE	3	Ţ	NB		7	SB	
Approach Movement			Т	R	L	T	R	L	Т	R	L	Т	R
Demand (v), veh/h		24	977	713	292	847	_	339	52	193	22	143	16
Signal Information		_	T	F .		.		1					
Cycle, s 130.0	Reference Phase 2	1	7 6	- 2	<u></u>		21/2		K	<u>_</u> _	a		
Offset, s 0			7	7	-	22	17		2-2-		2		
Uncoordinated No	Reference Point Begir Simult. Gap E/W On	Green		5.7	67.1	18.9		0.0			A		
	<u> </u>	Yellow	-	3.0	4.5 1.5	4.5 1.5	4.5 1.5	0.0			Y	-	
Force Mode Fixed	Simuit. Gap N/S On	Red	1.0	1.0	1.5	1.5	1.5	10.0		5	6	7	
Timer Results		EBI	-	EBT	WBI	L	WBT	NBL	-	NBT	SBL		SBT
Assigned Phase		5		2	1		6			8			4
Case Number		1.1		3.0	1.1		4.0			9.0			12.0
Phase Duration, s		7.0		73.1	16.7	,	82.8			24.9			15.3
Change Period, (Y+R	c), S	4.0		6.0	4.0		6.0			6.0			6.0
Max Allow Headway (<i>MAH</i>), s	4.0		0.0	4.0		0.0			5.2			5.1
Queue Clearance Tim	e (g s), s	2.8			11.7	·				16.7			8.6
Green Extension Time	(g e), s	0.0		0.0	1.0		0.0			2.2		\top	0.7
Phase Call Probability		1.00			1.00					1.00			1.00
Max Out Probability		0.00)		0.00)				0.49		工	0.02
Movement Group Re	sults		EB			WB			NB			SB	
Approach Movement	Juito	L	T	R	L	T	R	1	T	R	L	T	R
Assigned Movement		5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow Rate (/ \ veh/h	25	1007	735	301	440	439	192	211	199	98		89
Adjusted Flow Rate (,·	1810	1885	1610	1792	1881	1877	1792	1810	1579	1878	=	1838
	· ,	0.8	16.8	37.0		9.4	9.5	13.4	14.7	14.2	6.6		6.1
	9 · 1, ·	■ U.U			07			10.4	17.7	17.4	-		0.1
Queue Service Time (re Time (a a) s	_			9.7	-	_	13.4	1/1 7	1/1 2	86 8		6.1
Cycle Queue Clearand	ce Time (g c), s	0.8	16.8	37.0	9.7	9.4	9.5	13.4	14.7	14.2	6.6 0.07		6.1
Cycle Queue Clearand Green Ratio (<i>g/</i> C)	ce Time (<i>g</i> _c), s	0.8	16.8 0.52	37.0 0.66	9.7 0.63	9.4 0.59	9.5 0.59	0.15	0.15	0.24	0.07		0.07
Cycle Queue Clearand Green Ratio (<i>g/C</i>) Capacity (<i>c</i>), veh/h		0.8 0.54 420	16.8 0.52 1945	37.0 0.66 1064	9.7 0.63 448	9.4 0.59 1111	9.5 0.59 1109	0.15 260	0.15 263	0.24 384	0.07 135		0.07
Cycle Queue Clearand Green Ratio (g/C) Capacity (c), veh/h Volume-to-Capacity R	atio(X)	0.8 0.54 420 0.059	16.8 0.52 1945 0.518	37.0 0.66 1064 0.691	9.7 0.63 448 0.672	9.4 0.59 1111 0.396	9.5 0.59 1109 0.396	0.15 260 0.739	0.15 263 0.803	0.24 384 0.518	0.07 135 0.728		0.07 132 0.67
Cycle Queue Clearand Green Ratio (g/C) Capacity (c), veh/h Volume-to-Capacity R Back of Queue (Q), f	atio (<i>X</i>) t/ln (95 th percentile)	0.8 0.54 420 0.059 15.3	16.8 0.52 1945 0.518 246.2	37.0 0.66 1064 0.691 476.8	9.7 0.63 448 0.672 174.1	9.4 0.59 1111 0.396 149.3	9.5 0.59 1109 0.396 149.6	0.15 260 0.739 270.7	0.15 263 0.803 304.5	0.24 384 0.518 245	0.07 135 0.728 167.2		0.07 132 0.67 142.0
Cycle Queue Clearand Green Ratio (g/C) Capacity (c), veh/h Volume-to-Capacity R Back of Queue (Q), f Back of Queue (Q), v	atio (X) t/ln (95 th percentile) reh/ln (95 th percentile)	0.8 0.54 420 0.059	16.8 0.52 1945 0.518	37.0 0.66 1064 0.691	9.7 0.63 448 0.672	9.4 0.59 1111 0.396	9.5 0.59 1109 0.396	0.15 260 0.739	0.15 263 0.803	0.24 384 0.518	0.07 135 0.728		0.07 132 0.67 142.6 5.7
Cycle Queue Clearand Green Ratio (g/C) Capacity (c), veh/h Volume-to-Capacity R Back of Queue (Q), f Back of Queue (Q), v	atio (X) t/ln (95 th percentile) reh/ln (95 th percentile) (RQ) (95 th percentile)	0.8 0.54 420 0.059 15.3 0.6	16.8 0.52 1945 0.518 246.2 9.8	37.0 0.66 1064 0.691 476.8 19.1	9.7 0.63 448 0.672 174.1 6.9	9.4 0.59 1111 0.396 149.3 5.9	9.5 0.59 1109 0.396 149.6 6.0	0.15 260 0.739 270.7 10.7	0.15 263 0.803 304.5 12.0	0.24 384 0.518 245 9.6	0.07 135 0.728 167.2 6.4		0.07 132 0.67 142.0 5.7 0.00
Cycle Queue Clearand Green Ratio (g/C) Capacity (c), veh/h Volume-to-Capacity R Back of Queue (Q), f Back of Queue (Q), v Queue Storage Ratio Uniform Delay (d 1), s	atio (X) t/ln (95 th percentile) reh/ln (95 th percentile) (RQ) (95 th percentile)	0.8 0.54 420 0.059 15.3 0.6 0.12	16.8 0.52 1945 0.518 246.2 9.8 0.00	37.0 0.66 1064 0.691 476.8 19.1 1.36	9.7 0.63 448 0.672 174.1 6.9 0.51	9.4 0.59 1111 0.396 149.3 5.9 0.00	9.5 0.59 1109 6 0.396 6 149.6 6.0 0.00	0.15 260 0.739 270.7 10.7 0.89	0.15 263 0.803 304.5 12.0 0.00	0.24 384 0.518 245 9.6 1.36	0.07 135 0.728 167.2 6.4 0.00		0.07 132 0.67 142.0 5.7 0.00
Cycle Queue Clearand Green Ratio (g/C) Capacity (c), veh/h Volume-to-Capacity R Back of Queue (Q), f Back of Queue (Q), v Queue Storage Ratio Uniform Delay (d 1), s Incremental Delay (d	atio (X) t/ln (95 th percentile) reh/ln (95 th percentile) (RQ) (95 th percentile) s/veh 2), s/veh	0.8 0.54 420 0.059 15.3 0.6 0.12 14.0	16.8 0.52 1945 0.518 246.2 9.8 0.00 12.5	37.0 0.66 1064 0.691 476.8 19.1 1.36 13.7	9.7 0.63 448 0.672 174.1 6.9 0.51 13.7	9.4 0.59 1111 0.396 149.3 5.9 0.00 6.6	9.5 0.59 1109 6 0.396 8 149.6 6.0 0.00 6.7	0.15 260 0.739 270.7 10.7 0.89 53.2	0.15 263 0.803 304.5 12.0 0.00 53.8	0.24 384 0.518 245 9.6 1.36 42.6	0.07 135 0.728 167.2 6.4 0.00 59.1		0.07 132 0.67 142.0 5.7 0.00 58.8
Cycle Queue Clearand Green Ratio (g/C) Capacity (c), veh/h Volume-to-Capacity R Back of Queue (Q), f Back of Queue (Q), v Queue Storage Ratio Uniform Delay (d 1), s Incremental Delay (d Initial Queue Delay (d	atio (X) t/ln (95 th percentile) reh/ln (95 th percentile) (RQ) (95 th percentile) s/veh 2), s/veh // 3), s/veh	0.8 0.54 420 0.059 15.3 0.6 0.12 14.0 0.1	16.8 0.52 1945 0.518 246.2 9.8 0.00 12.5 1.0	37.0 0.66 1064 0.691 476.8 19.1 1.36 13.7	9.7 0.63 448 0.672 174.1 6.9 0.51 13.7	9.4 0.59 1111 0.396 149.3 5.9 0.00 6.6 1.1	9.5 0.59 1109 6 0.396 8 149.6 6.0 0.00 6.7 1.1	0.15 260 0.739 270.7 10.7 0.89 53.2 7.2	0.15 263 0.803 304.5 12.0 0.00 53.8 11.2	0.24 384 0.518 245 9.6 1.36 42.6	0.07 135 0.728 167.2 6.4 0.00 59.1 10.1		0.07 132 0.67 142. 5.7 0.00 58.8 8.1
Cycle Queue Clearand Green Ratio (g/C) Capacity (c), veh/h Volume-to-Capacity R Back of Queue (Q), f Back of Queue (Q), v Queue Storage Ratio Uniform Delay (d 1), s Incremental Delay (d Initial Queue Delay (d Control Delay (d), s/v	atio (X) t/ln (95 th percentile) reh/ln (95 th percentile) (RQ) (95 th percentile) s/veh 2), s/veh 3), s/veh reh	0.8 0.54 420 0.059 15.3 0.6 0.12 14.0 0.1	16.8 0.52 1945 0.518 246.2 9.8 0.00 12.5 1.0	37.0 0.66 1064 0.691 476.8 19.1 1.36 13.7 3.7 0.0	9.7 0.63 448 0.672 174.1 6.9 0.51 13.7 1.8	9.4 0.59 1111 0.396 149.3 5.9 0.00 6.6 1.1	9.5 0.59 1109 6 0.396 8 149.6 6.0 0.00 6.7 1.1 0.0	0.15 260 0.739 270.7 10.7 0.89 53.2 7.2 0.0	0.15 263 0.803 304.5 12.0 0.00 53.8 11.2	0.24 384 0.518 245 9.6 1.36 42.6 1.5	0.07 135 0.728 167.2 6.4 0.00 59.1 10.1		0.07 132 0.67 142. 5.7 0.00 58.8 8.1
Cycle Queue Clearand Green Ratio (g/C) Capacity (c), veh/h Volume-to-Capacity R Back of Queue (Q), f Back of Queue (Q), v Queue Storage Ratio Uniform Delay (d 1), s Incremental Delay (d Initial Queue Delay (d Control Delay (d), s/v Level of Service (LOS	atio (X) t/ln (95 th percentile) reh/ln (95 th percentile) (RQ) (95 th percentile) s/veh 2), s/veh (3), s/veh reh)	0.8 0.54 420 0.059 15.3 0.6 0.12 14.0 0.1 0.0	16.8 0.52 1945 0.518 246.2 9.8 0.00 12.5 1.0 0.0 13.4	37.0 0.66 1064 0.691 476.8 19.1 1.36 13.7 3.7 0.0 17.4	9.7 0.63 448 0.672 174.1 6.9 0.51 13.7 1.8 0.0 15.4	9.4 0.59 1111 0.396 149.3 5.9 0.00 6.6 1.1 0.0	9.5 0.59 1109 0.396 149.6 6.0 0.00 6.7 1.1 0.0 7.8	0.15 260 0.739 270.7 10.7 0.89 53.2 7.2 0.0 60.4	0.15 263 0.803 304.5 12.0 0.00 53.8 11.2 0.0 65.0 E	0.24 384 0.518 245 9.6 1.36 42.6 1.5 0.0	0.07 135 0.728 167.2 6.4 0.00 59.1 10.1 0.0 69.2		0.07 132 0.67 142. 5.7 0.00 58.8 8.1 0.0
Cycle Queue Clearand Green Ratio (g/C) Capacity (c), veh/h Volume-to-Capacity R Back of Queue (Q), f Back of Queue (Q), v Queue Storage Ratio Uniform Delay (d 1), s Incremental Delay (d Initial Queue Delay (c Control Delay (d), s/v Level of Service (LOS Approach Delay, s/veh	atio (X) t/ln (95 th percentile) reh/ln (95 th percentile) (RQ) (95 th percentile) s/veh 2), s/veh 1 3), s/veh reh 1 / LOS	0.8 0.54 420 0.059 15.3 0.6 0.12 14.0 0.1 0.0 14.1 B	16.8 0.52 1945 0.518 246.2 9.8 0.00 12.5 1.0 0.0 13.4	37.0 0.66 1064 0.691 476.8 19.1 1.36 13.7 3.7 0.0 17.4 B	9.7 0.63 448 0.672 174.1 6.9 0.51 13.7 1.8 0.0 15.4 B	9.4 0.59 1111 0.396 149.3 5.9 0.00 6.6 1.1 0.0	9.5 0.59 1109 0.396 149.6 6.0 0.00 6.7 1.1 0.0 7.8 A	0.15 260 0.739 270.7 10.7 0.89 53.2 7.2 0.0 60.4 E	0.15 263 0.803 304.5 12.0 0.00 53.8 11.2 0.0 65.0 E	0.24 384 0.518 245 9.6 1.36 42.6 1.5 0.0 44.1 D	0.07 135 0.728 167.2 6.4 0.00 59.1 10.1 0.0 69.2		0.07 132 0.67 142.0 5.7 0.00 58.8 8.1 0.0 67.0
Cycle Queue Clearand Green Ratio (g/C) Capacity (c), veh/h Volume-to-Capacity R Back of Queue (Q), t Back of Queue (Q), v Queue Storage Ratio Uniform Delay (d 1), s Incremental Delay (d Initial Queue Delay (d Control Delay (d), s/v Level of Service (LOS Approach Delay, s/veh Intersection Delay, s/veh	atio (X) t/ln (95 th percentile) reh/ln (95 th percentile) (RQ) (95 th percentile) s/veh 2), s/veh 1 3), s/veh reh 1 / LOS	0.8 0.54 420 0.059 15.3 0.6 0.12 14.0 0.1 0.0 14.1 B	16.8 0.52 1945 0.518 246.2 9.8 0.00 12.5 1.0 0.0 13.4 B	37.0 0.66 1064 0.691 476.8 19.1 1.36 13.7 3.7 0.0 17.4 B	9.7 0.63 448 0.672 174.1 6.9 0.51 13.7 1.8 0.0 15.4 B	9.4 0.59 1111 0.396 149.3 5.9 0.00 6.6 1.1 0.0 7.7	9.5 0.59 1109 0.396 149.6 6.0 0.00 6.7 1.1 0.0 7.8 A	0.15 260 0.739 270.7 10.7 0.89 53.2 7.2 0.0 60.4 E	0.15 263 0.803 304.5 12.0 0.00 53.8 11.2 0.0 65.0 E	0.24 384 0.518 245 9.6 1.36 42.6 1.5 0.0 44.1 D	0.07 135 0.728 167.2 6.4 0.00 59.1 10.1 0.0 69.2 E		0.07 132 0.67 142.0 5.7 0.00 58.8 8.1 0.0 67.0
Cycle Queue Clearand Green Ratio (g/C) Capacity (c), veh/h Volume-to-Capacity R Back of Queue (Q), f Back of Queue (Q), v Queue Storage Ratio Uniform Delay (d 1), s Incremental Delay (d Initial Queue Delay (d Control Delay (d), s/v	atio (X) t/ln (95 th percentile) reh/ln (95 th percentile) (RQ) (95 th percentile) s/veh 2), s/veh 1 3), s/veh reh 1 / LOS eh / LOS	0.8 0.54 420 0.059 15.3 0.6 0.12 14.0 0.1 0.0 14.1 B	16.8 0.52 1945 0.518 246.2 9.8 0.00 12.5 1.0 0.0 13.4 B	37.0 0.66 1064 0.691 476.8 19.1 1.36 13.7 3.7 0.0 17.4 B	9.7 0.63 448 0.672 174.1 6.9 0.51 13.7 1.8 0.0 15.4 B	9.4 0.59 1111 0.396 149.3 5.9 0.00 6.6 1.1 0.0 7.7 A	9.5 0.59 1109 0.396 149.6 6.0 0.00 6.7 1.1 0.0 7.8 A	0.15 260 0.739 270.7 10.7 0.89 53.2 7.2 0.0 60.4 E	0.15 263 0.803 304.5 12.0 0.00 53.8 11.2 0.0 65.0 E	0.24 384 0.518 245 9.6 1.36 42.6 1.5 0.0 44.1 D	0.07 135 0.728 167.2 6.4 0.00 59.1 10.1 0.0 69.2 E	SB	0.07 132 0.67 142.6 5.7 0.00 58.8 8.1 0.0 67.0

Generated: 1/30/2017 4:17:09 PM

ORD 2018-7680 Page 74 of 89

		HCS 20	10	Sig	ınaliz	ed In	te	rsect	ion	Int	erme	diate	• Va	lues					
0	-4!										Luta	4: .				4			
General Inform	nation	14.04.1										rsectio				\dashv			
Agency		KLOA, Inc.			•		4	10.4.100	4			tion, h		0.25 Oth					
Analyst		NJB			<u> </u>				/24/2017			L							
Jurisdiction		DuPage County			Time F Analys		_	PM	PHF			0.9							
Urban Street							_	018				ysis Pe		1> 7	7:00	-			
Intersection		63rd Street with Wo		W	File Na	me	6	3rd and	d Wo	odwa	ard PM	FU.xus	S						
Project Descrip	tion	Future PM Peak Ho	our																
Demand Inform	Demand Information									١	WB			NI	В	7	S	В	
Approach Move			_		L	EB T	Т	R	L	Т	Т	R	L	Т	-	L		T	R
Demand (v), v					24	977	Ť	713	292	2 8	847	5	339	52	_	_		43	16
<i> \</i>							i												
Signal Informa	tion	-				2		7		<u>-</u>		211			_	200			
Cycle, s	130.0	Reference Phase		2		L, 6		2	ا ₹	7	512				-	↔ ,			4
Offset, s	0	Reference Point	В	egin	Green	3.0	15	5.7	67.1	1	8.9	9.3	0.0			K			*
Uncoordinated	No	Simult. Gap E/W	(On	Yellow			3.0	4.5			4.5	0.0		<i>></i>	★			
Force Mode	Fixed	Simult. Gap N/S	(On	Red	1.0	1	1.0	1.5	1	1.5	1.5	0.0		5	6		7	
																11			
				<u>. </u>	EB	-				VB		٠.		NB		L.	SE	3	
Saturation Flor			_	L	T	F	_	L	_	Т	R	L		T	R	L	T	_	R
Lane Width Adj				1.00		_	_	1.000	_	000	1.000		$\overline{}$	1.000	1.000	1.000	1.00	\rightarrow	1.000
Heavy Vehicle A	•	, ,		1.00	_	_	_	0.990			1.000	_	-	0.980	0.980	0.952	1.00	-	1.000
• •		tment Factor (fg)		1.00		_	_	1.000	-	000	1.000	_	-	1.000	1.000	1.000	1.00	\rightarrow	1.000
Parking Activity Adjustment Factor (f _p)					0 1.00	_	_	1.000		000	1.000		$\overline{}$	1.000	1.000	1.000	1.00	-	1.000
Bus Blockage Adjustment Factor (fbb)				1.00		_	_	1.000	-	000	1.000	_	-	1.000	1.000	1.000	1.00	-	1.000
Area Type Adju		. ,		1.00		_	_	1.000	-	000	1.000		-	1.000	1.000	1.000	1.00	_	1.000
		ment Factor (fLU)		1.00		_	00	1.000		000	1.000	_	-	1.000	1.000	1.000	1.00	_	1.000
Left-Turn Adjust				0.95		_		0.952	_	000		0.95	-	0.000		0.000	0.98	_	
Right-Turn Adju		· /	_		0.00	0 0.8	47		_	98	0.998	_	-	0.000	0.847		0.96	57 (0.968
		djustment Factor (f _L ,	_	1.00	0			1.000	4	_		1.00	00			1.000	-	-	
		djustment Factor (f _R	_	101		1.0	_	1=00	+		1.000	_		1010	1.000			\rightarrow	1.000
		Flow Rate (s), veh/h	_	181		_	_	1792		36	22	179	_	1810	1579	434	294	-	342
		Arriving on Green (F	?)	0.02		_	_	0.10	-	79	0.59	0.1		0.15	0.15	0.07	0.0	\rightarrow	0.07
Incremental De	lay Fact	tor (<i>k</i>)		0.1	1 0.50	0.5	50	0.11	0.	50	0.50	0.1	9	0.23	0.15	0.15		_	0.15
Signal Timing	/ Mover	ment Groups		F	BL	EBT/	R	WE	31	W	VBT/R	N	IBL	N	NBT/R	SBI		SE	BT/R
Lost Time (t _L)	, move	попс оточро			.0	6.0	•	4.0		_	6.0	1	·DL	┿	6.0	OB.			6.0
Green Ratio (g/	(C)			_	54	0.52		0.6		_	0.59				0.15				.07
,-		low Rate (s_p) , veh/h/	/In		42	0		56			0			_	1792				0
		v Rate (ssh), veh/h/ln	_								-								
Permitted Effec				67	7.1	0.0		69	.1		0.0				0.0			0	0.0
Permitted Servi		,= ,			5.3	0.0		50		_	0.0				0.0				0.0
Permitted Queu		,= ,			.1			21						_					
Time to First Blo		,= ,			.0	0.0		0.0			0.0				0.0			0	0.0
		efore Blockage (<i>gf</i> s),	s																
		tion Flow (s_R), veh/h	_			1610									1579				
		ve Green Time (g_R) ,	_			18.9								_	12.7				
Multimodal		(3)			EE				V	VB				NB			SI	3	
Pedestrian F _w /	Fv			2.	107	0.00		1.5			0.00	2.	107	- 11	0.00	2.22	_		.00
Pedestrian F _s /				_	000	0.109	-	0.0		_	0.096	_	000	_	0.172	0.00	_		161
Pedestrian Mcon		/																	
Bicycle c _b / d _b				103	1.61	15.24	ļ	1181	.49	1	0.89			-	72.19	143.4	19	56	3.01
					.64	1.46	_	-3.6		-	0.97	-3	3.64		0.99	-3.6	-		.15

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

WARNING: The shared-plus-exclusive turn lane solution is an approximation of the HCM method, because more than three lane groups cannot be accommodated. Input data for Percent Turns in Shared Lane are used to specify proportion of turning vehicles in the shared lane.

--- Comments ---

Copyright © 2017 University of Florida, All Rights Reserved.

HCS 2010™ Streets Version 6.90

Generated: 1/30/2017 4:17:09 PM

Page 76 of 89 ORD 2018-7680

		5 ZU1	I0 Sig	naliz	zed Int	tersec	ction	Input	Data						
												-	4 14 1	L.T.	
General Information							\rightarrow	Intersec		-	on		4		
<u> </u>	KLOA, Inc.		1		1			Duration		0.25		7		1	
	NJB							Area Typ	е	Other					
	DuPage County		Time F			/lidday	_	PHF		0.95		_ 🖹 🕽	w	-	
	63rd Street		-		r 2018			Analysis		1> 7:0	00	7			
	63rd Street with Wo		File N	ame	63rd a	and Woo	odward	d SATFU.	xus				ጎተሰ		
Project Description	Future SAT Midday	Peak H	lour									The state of the s	4 1 4 4	† <u>(*</u>	
Demand Information		EB		T	WI	В		NB		SB					
Approach Movement			L	Т	R	L	Т	R	L	T	R	L	T	R	
Demand (v), veh/h				724	445	191	84	1 6	415	41	236	18	57	17	
Signal Information					F .		.								
	Reference Phase	2	1	10	<u> </u>	≓ ,	Ħ	211	1			7			
-,,	Reference Point	-			7 7	, 📑 🖰	24	117				♀ 2			
, ,		Begin	Green		1.6	51.9	19.		0.0		_	<u> </u>			
	Simult. Gap E/W	On	Yellow	-	3.0	4.5	4.5		0.0		^	Y	_		
Force Mode Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.5	1.5	1.5	0.0		5	6	7		
Traffic Information				EB			WB			NB			SB		
Approach Movement			L	Т	R	L	Т	R	L	Т	R	L	Т	R	
Demand (v), veh/h			20	724	445	191	841	6	415	41	236	18	57	17	
Initial Queue (Qb), veh/h	າ		0	0	0	0	0	0	0	0	0	0	0	0	
Base Saturation Flow Ra	ate (s₀), veh/h		1900	2000	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Parking (Nm), man/h				None			None	е		None			None		
Heavy Vehicles (Рну), %	6		5	1	1	1	2		0	3	0		0		
Ped / Bike / RTOR, /h			0	0	0	0	0	0	0	0	0	0	0	0	
Buses (Nb), buses/h			0	0	0	0	0	0	0	0	0	0	0	0	
Arrival Type (AT)			3	4	3	3	4	3	3	3	3	3	3	3	
Upstream Filtering (/)			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Lane Width (W), ft			12.0	12.0	12.0	12.0	12.0		12.0	12.0	12.0		12.0		
Turn Bay Length, ft			125	0	350	340	0		305	0	180		0		
Grade (Pg), %				0			0			0			0		
Speed Limit, mi/h			40	40	40	40	40	40	30	30	30	25	25	25	
Phase Information			EBL	_	EBT	WB		WBT	NBL		NBT	SBL		SBT	
Maximum Green (<i>G_{max}</i>)	or Phase Split s		13.0			19.0		45.0	33.0			ODL	_	19.0	
Yellow Change Interval	•		3.0	_	4.5	3.0	_	4.5	4.5			-	_	4.5	
Red Clearance Interval	· ,		1.0	_	1.5	1.0		1.5	1.5	_	1.5	_	_	1.5	
Minimum Green (<i>Gmin</i>),	· ,		3	_	15	3		15	3		8	3	_	8	
Start-Up Lost Time (It),			2.0	+	2.0	2.0		2.0	2.0		2.0	2.0		2.0	
Extension of Effective G			2.0	_	2.0	2.0	_	2.0	2.0		2.0	2.0		2.0	
Passage (PT), s	лосії (в), э		3.0	_	7.0	3.0	_	7.0	3.0	_	4.0	3.0	_	4.0	
Recall Mode			Off		Min	Off	_	Min	Off	_	Off	Off		Off	
Dual Entry			Yes	_	Yes	Yes	_	Yes	No		Yes	No		Yes	
-			0.0		0.0	0.0	_	0.0	0.0	_	0.0	0.0		0.0	
Walk (Walk) s	ima (DC) a		0.0	_	0.0	0.0	_	0.0	0.0	_	0.0	0.0	_	0.0	
Walk (<i>Walk</i>), s Pedestrian Clearance Ti	ime (PC), S	. Substituti Great affect fill (1 0), 5													
Pedestrian Clearance Ti															
Pedestrian Clearance Ti	n			EB	25	0	WB	-		NB	25		SB	25	
Pedestrian Clearance Ti Multimodal Information 85th % Speed / Rest in	n Walk / Corner Rad	us	0	No	25	0	No	25	0	No	25	0	No	25	
Pedestrian Clearance Ti Multimodal Information 85th % Speed / Rest in Walkway / Crosswalk W	n Walk / Corner Rad /idth / Length, ft	us	9.0	No 12	0	9.0	No 12	25	9.0	No 12	0	9.0	No 12	0	
Pedestrian Clearance Ti Multimodal Information 85th % Speed / Rest in	n Walk / Corner Rad /idth / Length, ft curb	us	_	No	_		No	25	_	No			No	_	

ORD 2018-7680 Page 77 of 89

					Res							
					\Box	Intersec	tion Infe	ل		Ja ly		
KLOA, Inc.						Duration,	h	0.25			44	
NJB	Analys	sis Date	1/24/2	2017		Area Typ	e	Other				
DuPage County	Time F							0.95		*	w∳e	
63rd Street	Analys	sis Year				Analysis	Period	1> 7:0	00	-		•
63rd Street with Woodw.				and Woo		•					5 ቀ የ	
<u> </u>										'n	4 1 4 Y	7 1
	7	EB		7	WE	3	1	NB		1	SB	
	L	-	T R	L	-	-	L	-	□ R	L	-	R
	20	724	445	191	84	_	415	41	236	18	57	17
Deference Dhase 2	-	7 /	_ 3	 , 3		217	î		_	,		
		7	7	, 📑 🔭	216	177		- E-	ightharpoonup	♀ 2		
	Green		1.6	51.9			0.0			<u> </u>		
	1011011	-							~	Y		
Simult. Gap N/S On	Red	1.0	1.0	1.5	1.5	1.5	0.0		5	6	7	
	EBI		EBT	WBI	L	WBT	NBL	. T	NBT	SBL		SBT
	5		2	1		6			8		\top	4
	1.1		3.0	1.1		4.0			9.0			12.0
	7.0		57.9	12.6	3	63.5			25.9		\top	13.6
c), S	4.0		6.0	4.0		6.0			6.0			6.0
	4.0		0.0	4.0		0.0			5.2		\top	5.2
· · · · · · · · · · · · · · · · · · ·	2.7			8.0					16.9			4.9
	0.0	\neg	0.0	0.6		0.0		\neg	3.1		\top	0.3
, ,	1.00)		1.00					1.00			0.95
	0.00)		0.00					0.40		工	0.00
eulte	_	FR			W/R			NR			SR	
uito		_	P			P	-		P	, ,		R
	5		_		_		3			7	_	14
) veh/h							_	-	-			46
<u>, </u>		_				_						1775
	_											2.7
- ,	_	_			_	_				$\overline{}$		2.7
5 mile (9 c), 5			_							$\overline{}$		0.07
			_									122
atio (X)			_									0.37
	_		_		_	_			-			58.8
			_									2.4
<u></u>												0.00
, , ,	_		_			_						48.9
	_	_	_			_						2.7
,-	_		_									0.0
·		_										51.6
			_			_						D D
	_											D
eh / LOS	12.0).8		ט	44.2			C 31.7		U
/II / LOO												
2117 200												
/LOS		EB	С	2.3	WB		2.9	NB	С	3.0	SB	С
	NJB DuPage County 63rd Street 63rd Street with Woodw. Future SAT Midday Peak Reference Phase 2 Reference Point Beg Simult. Gap E/W On Simult. Gap N/S On Simult. Gap N/S On c), s MAH), s e (gs), s (ge), s sults sults c), veh/h bw Rate (s), veh/h/ln gs), s e Time (gc), s atio (X) //n (95 th percentile) //eh/n (95 th percentile) //eh/s), s/veh s), s/veh eh	NJB	NJB	NJB	NJB	Reference Phase 2 Reference Phase 2	NJB	Reference Phase 2 Reference Point Begin Simult. Gap E/W On Simult. Gap E/W On Simult. Gap S/S Simult	KLOA, Inc. NJB	NJB	KLOA, Inc. Duration, h Duzition, h Duzitii h Duz	RLOA, Inc. NJB

Generated: 1/31/2017 1:10:28 PM

ORD 2018-7680 Page 78 of 89

		HCS 20	10	Sign	alize	d Inte	ersect	ion l	nte	rmed	diate	Valu	ıes				
General Inform	nation									Inters	section	Info	rmati	on			
Agency	iation	KLOA, Inc.							-	Durat		_	0.25	011	\dashv .		
Analyst		NJB			Analysis Date 1/24/2017						•		Othe	r			
Jurisdiction		DuPage County	_		ime Pe									0.95			
Urban Street		63rd Street			nalysis	_	2018				/sis Period 1> 7:00			-4			
Intersection		63rd Street with Wo	o d		ile Nan	_	63rd and	1 ///000	dwar			iou	1- 7.	.00	-		
Project Descrip			ie į	osiu and	1 VVOOC	ıwaı	u SAI	ru.xus				\dashv					
Project Descrip	lion	Future SAT Midday	re	ак пос	II												
Demand Inform			EB		WB				NB					3			
Approach Movement					L	Т	R	L	1	Γ	R	L	Т	R	L	Т	R
Demand (v), v	eh/h				20	724	445	191	84	41	6	415	41	236	18	57	17
Signal Informa	tion						Б	٠,			111						
-		Reference Phase	_	2	-	7 ,	Ħ			2	뀌				7		
Cycle, s Offset, s	110.0	Reference Point	\vdash			7	2	3 -	20	1					2		4
Uncoordinated	No	Simult. Gap E/W	_		Green 3			51.9	19			0.0			4		
Force Mode	Fixed	Simult. Gap E/W	-		ellow 3	3.0 1.0		4.5 1.5	1.5			0.0		/ _	Y		7
Force wode	rixeu	Simult. Gap 14/5	_	אן ווכ	.eu	1.0	1.0	1.5	1.0	J 1	.5	0.0		3			
			П		EB		T	WE	3			N	IB			SB	
Saturation Flo	w / Dela	ay		L	Т	R	L	T		R	L	Τ-	Т	R	L	Т	R
Lane Width Adj	ustmen	t Factor (f _w)		1.000	1.000	1.000	1.000	1.00	0	1.000	1.000	1.0	000	1.000	1.000	1.00	1.000
Heavy Vehicle A	Heavy Vehicle Adjustment Factor (f _{HV})					0.990	0.990	0.98	0	1.000	1.000	0.9	971	1.000	0.943	1.00	1.000
Approach Grad	e Adjus	tment Factor (f _g)		1.000	1.000	1.000	1.000	1.00	0	1.000	1.000	1.0	000	1.000	1.000	1.00	1.000
Parking Activity	Adjustr	nent Factor (f _p)		1.000	1.000	1.000	1.000	1.00	0	1.000	1.000	1.0	000	1.000	1.000	1.00	1.000
Bus Blockage A	Bus Blockage Adjustment Factor (fbb)				1.000	1.000	1.000	1.00	0	1.000	1.000	1.0	000	1.000	1.000	1.00	1.000
Area Type Adju	stment	Factor (f _a)		1.000	1.000	1.000	1.000	1.00	0	1.000	1.000	1.0	000	1.000	1.000	1.00	1.000
Lane Utilization	Adjustr	ment Factor (<i>f</i> ∟ <i>∪</i>)		1.000	0.952	1.000	1.000	1.00	0	1.000	1.000	1.0	000	1.000	1.000	1.00	1.000
Left-Turn Adjus	tment F	actor (<i>f</i> _L τ)		0.952	0.000		0.952	0.00	0		0.952	0.0	000		0.000	0.982	2
Right-Turn Adju	stment	Factor (f _{RT})			0.000	0.847		0.99	7 (0.997		0.0	000	0.847		0.93	1 0.934
Left-Turn Pedes	strian A	djustment Factor (f _L ,	ob)	1.000			1.000				1.000				1.000		
Right-Turn Ped	-Bike Ad	djustment Factor (<i>f</i> _{R/}	ob)			1.000			T.	1.000				1.000			1.000
Movement Satu	ıration F	low Rate (s), veh/h		1723	3770	1594	1792	3694	4	26	1810	18	16	1610	694	2255	692
Proportion of Ve	ehicles /	Arriving on Green (F	?)	0.03	0.63	0.47	0.08	0.70)	0.52	0.18	0.	18	0.18	0.07	0.07	0.07
Incremental De	lay Fac	tor (<i>k</i>)		0.11	0.50	0.50	0.11	0.50)	0.50	0.18	0.	18	0.15	0.15		0.15
															0.00	-	227/2
Signal Timing	/ Move	ment Groups	-	EB	_	EBT/R				BT/R	NBL		NBT/R		SBI	-	SBT/R
Lost Time (t _L)	(0)		_	4.0		6.0	4.0		6.0				6.0		_	_	6.0
Green Ratio (g/		D (/) 1//		0.50	_	0.47	0.5	_	0.52		+		0.18		_	-	0.07
		low Rate (sp), veh/h/ v Rate (ssh), veh/h/lr	-	604	·	0	70	8	(0	\vdash		1	810	_	+	0
Permitted Effec		, ,		51.9	9	0.0	53.	9	0	0.0				0.0		\dashv	0.0
Permitted Servi		,- ,		43.0	_	0.0	40.	_		0.0			_	0.0			0.0
Permitted Queu		,= ,		0.3			5.3	3									
Time to First Blo	ockage	(<i>g_f</i>), s		0.0		0.0	0.0)	0	0.0			(0.0			0.0
Queue Service	Time B	efore Blockage (<i>g</i> fs),	s														
Protected Right	Satura	tion Flow (<i>s</i> _R), veh/h	/ln			1594							1	610			
Protected Right	Effectiv	ve Green Time (<i>g</i> _R),	s			19.9							8	8.6			
Multimodal					EB			WE	3			N	IB			SB	
Pedestrian F _w /	Fv			2.10	7	0.00	1.55	57	0.	.00	2.1	07	C	0.00	2.22	4	0.00
Pedestrian F _s /	Fdelay			0.00	0	0.110	0.00	00	0.1	101	0.0	00	0.	.166	0.00	0	0.155
Pedestrian Mcor	ner / M cw	,															
Bicycle c _b / d _b				943.4		15.35	1045			2.54			-	2.22	137.9		47.68
Bicycle Fw / Fv				-3.6	4	1.03	-3.6	64	0.	.90	-3.6	64	1	.20	-3.6	4	80.0

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

WARNING: The shared-plus-exclusive turn lane solution is an approximation of the HCM method, because more than three lane groups cannot be accommodated. Input data for Percent Turns in Shared Lane are used to specify proportion of turning vehicles in the shared lane.

--- Comments ---

Copyright © 2017 University of Florida, All Rights Reserved.

HCS 2010™ Streets Version 6.90

Generated: 1/31/2017 1:10:28 PM

ORD 2018-7680 Page 80 of 89

Summary of Neighborhood Meeting
Meadowbrook Shopping Center, Downers Grove
Walgreens Development
November 28, 2017 7:00pm, Horizon Church, Meadowbrook Center

Attendance:

Owner: Perri Knight (project manager

Residents/Tenants: No residents in attendance, 4 current tenants attended

Presentation materials included a site plan for Walgreens, a site improvement plan for overall center, renderings of Walgreens and façade, Walgreens provided statistics

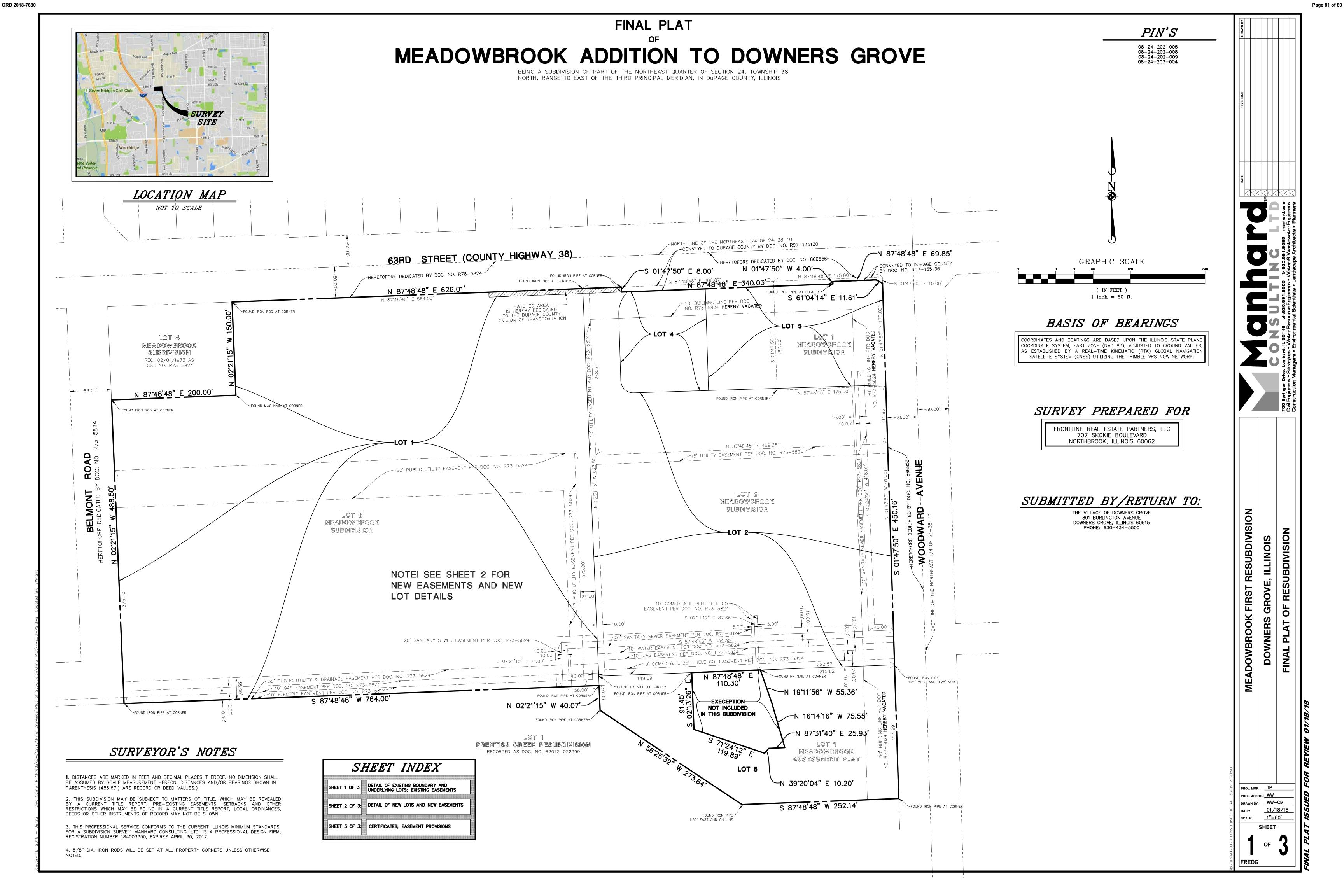
Meeting began a few minutes after 7pm.

Questions related to timing of construction for façade improvements.

Answer: We are in for permit on the façade and hope to submit revised Walgreens plans for permit on 12/20. We hope to get approval from the village in February and start both WAG and facade in March.

Explained that due to the timing delay on getting the WAG approvals, WAG has renegotiated their lease/building and we are required to start the approval process over.

Questions related to roof replacements.


Answer: Unfortunately, do to the other aesthetic and ancillary improvements we are required to make, a full roof replacement is not in the budget.

Question re: Construction timing/staging

Answer: Perri committed to having another meeting with the tenants once we have approval on both projects to discuss staging for construction equipment as well as timelines for façade—e.g. starting at one end first and working our way down versus in the middle etc.

Question re: signage

Answer: Perri met with sign company who is working on proposal for entire center to unify signage with channel letters in accordance with village signage ordinances. Costs yet to be determined as is decision whether we move forward with new signage or keep the old.

ORD 2018-7680 Page 82 of 89 FINAL PLAT MEADOWBROOK ADDITION TO DOWNERS GROVE BEING A SUBDIVISION OF PART OF THE NORTHEAST QUARTER OF SECTION 24, TOWNSHIP 38 NORTH, RANGE 10 EAST OF THE THIRD PRINCIPAL MERIDIAN, IN DUPAGE COUNTY, ILLINOIS NORTH LINE OF THE NORTHEAST 1/4 OF 24-38-10

CONVEYED TO DUPAGE COUNTY BY DOC. NO. R97-135130 CONVEYED TO DUPAGE COUNTY BY DOC. NO. R97-135136 63RD STREET (COUNTY HIGHWAY 38) HERETOFORE DEDICATED BY DOC. NO. 866856 ∕N 87°48'48" E 69.85' TO THE DUPAGE COUNTY DIVISION OF TRANSPORTATION 1,704 S.F. 0.039 AC. -HERETOFORE DEDICATED BY DOC. NO. R78-5824-N 01°47'50" W 4.00'— ∕S 01/4/7′50" E 8.00' ---N-87'48'48"-E-340.03'-N 87°48'48" E 626.01' <u> 205.18'— — — — </u> N 87'48'48" F S 61°04'14" E 11.61'-_____CH=S 21"15'14" W | 39.16' | 10" P.O.E. HEREBY GRANTED 71.74 S 02"11'12" E 151.07 R=50.00' L=40.23' ~10' P.U.E. 5' P.U.E. HEREBY GRANTE HEREBY GRANTED HEREBY GRANTED GRAPHIC SCALE SIGN EASEMENT HEREBY GRANTED HEREBY GRANTED 47,138 S.F. 1.082 AC. CH=N 25°18'32" W 39.10' LOT 4 R=49.00' L=40.21 22,615 S.F. 0.519 AC. MEADOWBROOK (IN FEET) SUBDIVISION 1 inch = 60 ft.REC. 02/01/1973 AS HEREBY GRANTED DOC. NO. R73-5824 _CH=S 46°47'50\" E|||28.⁄28' HEREBY GRANTED CH=N 49°46'03" E 29.77' 10' P.U.E. HEREBY GRANTED R=20.00' L=31.42' R=19.00' L=34.20' S 78°40'04" E 19.74' S 87°12'18" E 111.01' N 87°48'48"_E 200.00' **→** -66.00'- - - N 88°12'10" E 405.37 N 87°48'48" E 633.83' CROSS ACCESS EASEMENT HEREBY GRANTED (HATCHED AREA ONLY) _.__N 87°12′18" W 107.47' --10' P.U.E. S 87°48'48" W 632.44' S 88°12'10" W 435.48' **├** -50.00'- **→** HEREBY GRANTED **-** −50.00'- - N 78°40'04" W 43.19'— _CH=S 80°00'01" E 24.60' R=40.00' L=25.00' —LOT 1-CH=S 81°50'49" E 59.08' 456,605 S.F. 10.482 AC. R=105.00' L=59.89' N 88°12'10" E 25.00'— S 82°03'20" E 25.00'— CH=N 73°39'28" E 83.35'_ **RO**. ∕S 47°09'39" E \7.03' R=181.50' L=84.10' 93.59 N 87°28'32" E 380.87' CH=N 74°19'54" E 36.40' N 86°55'56" E R=75.50' L=36.76' _CH=S 78°44'40" E 63.61' N 43°30'29" E 15.47' S 87°28'32" W 433.49' S 88°12'10" W 22.00' S 86°55'56" W 92.00' _CH=S 72°05'48" W 23.69' CROSS ACCESS EASEMENT HEREBY GRANTED 10' P.U.E. HEREBY GRANTED -WOODWAI **BEI** (HATCHED AREA ONLY) S 27°30'47" W 16.48' N 88°1006" W 53.27' **LOT 2**225,238 S.F.
5.171AC. S 88°16'49" W 217.28' N 62°29'13" W CH=S 74°19'54" W 52.79'__ R=109.50' L=53.32' CH=S 73°39'28" W 67.74'___ R=147.50' L=68.35' MEADOWBROOK FIRST RESUBDIVISION FINAL PLAT OF RESUBDIVISION DOWNERS GROVE, ILLINOIS 76°32'32" E 22.80' NOTE! SEE SHEET 1 FOR CH=N 4443'17" E 18.90'_ R=\(2.99' L=21.16' **EXISTING EASEMENTS THAT** ∕10' P.U.E. HEREBY GRANTED AFFECT THE PROPERTY. N 87°48'48" E 157.43' N 02°11'12" W 48.00'— —S 88°12'µ0" W 5.00' —S 36°10'\$7" W 6.50' N 87°48'48" E 475.81 215.82' N 87°48'48" E 110.30' 149.69' ─N 19"11'56" W 55.36' 10' P.U.E. HEREBY GRANTED-S 87°48'48" W 764.00' N 02°21'15" W 40.07 NOT INCLUDED
IN THIS SUBDIVISION ─N 16°14'16" W 75.55' -N 87'31'40" E 25.93' LOT 1 PRENTISS CREEK RESUBDIVISION RECORDED AS DOC. NO. R2012-022399 N 55°59'22" W 9.11' N 39°20'04" E 10.20' ∽S 87°48¦48" W 20.00i S 87'48'48" W 252.14' ~10' P.U.E. HEREBY GRANTED PROJ. MGR.: SAS 01/18/18 1"=60'

ORD 2018-7680

FINAL PLAT

MEADOWBROOK ADDITION TO DOWNERS GROVE

BEING A SUBDIVISION OF PART OF THE NORTHEAST QUARTER OF SECTION 24, TOWNSHIP 38 NORTH, RANGE 10 EAST OF THE THIRD PRINCIPAL MERIDIAN, IN DuPAGE COUNTY, ILLINOIS

	COMMUNITY DEVELOPMENT CERTIFICATE
OWNER'S CONSENT	STATE OF ILLINOIS)
STATE OF))SS) SS COUNTY OF DuPAGE)
)SS COUNTY OF)	
	APPROVED BY THE DOWNERS GROVE DIRECTOR OF COMMUNITY DEVELOPMENT, DUPAGE
THE UNDERSIGNED, HEREBY CERTIFIES THAT FL CEDAR, LLC IS THE HOLDER OF THE LEGAL	COUNTY, ILLINOIS THIS DAY OF, A.D. 20
TITLE OF ALL OF THE PROPERTY DESCRIBED HEREON AND THAT IT HAS CAUSED SAID PROPERTY TO BE SURVEYED AND SUBDIVIDED AS SHOWN ON THE PLAT HEREON DRAWN. THIS	DV.
IS TO ALSO CERTIFY THAT FL CEDAR, LLC, AS OWNER OF THE PROPERTY DESCRIBED AS MEADOWBROOK ADDITION TO DOWNERS GROVE AND LEGALLY DESCRIBED ON THE PLAT OF THE	BY: DIRECTOR OF COMMUNITY DEVELOPMENT
SAME NAME, HAVE DETERMINED TO THE BEST OF OUR KNOWLEDGE THE SCHOOL DISTRICT IN WHICH EACH OF THE FOLLOWING LOTS LIE.	PRINTED NAME:
LOT NUMBER(S) SCHOOL DISTRICT	ATTEST:
	VILLAGE CLERK
ALL GRADE SCHOOL DISTRICT NO. 68 HIGH SCHOOL DISTRICT NO. 99	PRINTED NAME:
COLLEGE OF DUPAGE DISTRICT NO. 502	
DATED THIS DAY OF, A.D., 20	
	DOWNERS GROVE SANITARY CERTIFICATE
BY:	STATE OF ILLINOIS)
PRINTED NAME AND TITLE:	COUNTY OF Dupage)
	I,, COLLECTOR OF THE DOWNERS GROVE SANIATRY
BY:	DOSTRICT, DO HEREBY CERTIFY THAT THERE ARE NO DELINQUENT OR UNPAID CURRENT OR FORFEITED SPECIAL ASSESSMENTS OF ANY DEFERRED INSTALLMENTS THEREOF THAT HAVE NOT
PRINTED NAME AND TITLE:	BEEN APPORTIONED AGAINST THE TRACT OF LAND, INCLUDED IN THIS PLAT.
TRINTED NAME AND TITLE.	DATED AT DOWNERS GROVE, Dupage County, Illinois, this day of, a.d.,20
NOTARY PUBLIC	COLLECTOR OF THE DOWNERS GROVE SANITARY DISTRICT
STATE OF))SS	
COUNTY OF)	
	VILLAGE COLLECTOR CERTIFICATE
I,, A NOTARY PUBLIC IN AND FOR THE COUNTY AND STATE AFORESAID, DO HEREBY CERTIFY THAT	STATE OF ILLINOIS)
AND	COUNTY OF Dupage)
OF WHO IS/ARE PERSONALLY KNOWN TO ME TO BE THE	COLLECTOR FOR THE VILLAGE OF DOWNERS GROVE
SAME WHOSE NAME(S) IS/ARE SUBSCRIBED TO THE FOREGOING CERTIFICATE, APPEARED BEFORE ME THIS DAY IN PERSON AND ACKNOWLEDGED THAT HE/SHE/THEY DID SIGN AND	I,, COLLECTOR FOR THE VILLAGE OF DOWNERS GROVE, ILLINOIS, DO HEREBY CERTIFY THAT THERE ARE NO DELINQUENT OR UNPAID CURRENT OR FORFEITED SPECIAL ASSESSMENTS OF ANY DEFERRED INSTALLMENTS THEREOF THAT HAVE NOT
DELIVER THIS INSTRUMENT AS A FREE AND VOLUNTARY ACT FOR THE USES AND PURPOSES HEREIN SET FORTH.	BEEN APPORTIONED AGAINST THE TRACT OF LAND, INCLUDED IN THIS PLAT.
GIVEN UNDER MY HAND AND NOTORIAL SEAL THIS DAY OF, A.D., 20	DATED AT DOWNERS GROVE, DuPAGE COUNTY, ILLINOIS, THIS DAY OF, A.D.,20
	VILLAGE COLLECTOR
NOTARY PUBLIC	
MODITO A OFFI COMOTHIE	COUNTY CLERK'S CERTIFICATE
MORTGAGEE CONSENT	
STATE OF))SS COUNTY OF)	STATE OF ILLINOIS))SS
COUNTY OF)	COUNTY OF DUPAGE)
THE UNDERSIGNED, AS MORTGAGEE, UNDER THE PROVISIONS OF CERTAIN MORTGAGE DATED	I,, COUNTY CLERK OF DUPAGE COUNTY, ILLINOIS DO HEREBY CERTIFY THAT THERE ARE NO DELINQUENT TAXES, NO UNPAID CURRENT GENERAL
AND RECORDED IN THE RECORDER'S OFFICE OF,	TAXES AND NO UNPAID FORFEITED TAXES, AND NO REDEEMABLE TAX SALES AGAINST ANY OF THE LAND INCLUDED IN THE PLAT.
COUNTY, ILLINOIS, ON THIS DAY OF, A.D.,, AS DOCUMENT	I FURTHER CERTIFY THAT I HAVE RECEIVED ALL STATUTORY FEES IN CONNECTION WITH THE
NUMBER, HEREBY CONSENTS TO THE SUBDIVISION STATED HEREIN.	PLAT. GIVEN UNDER MY HAND AND SEAL OF THE COUNTY CLERK OF DUPAGE COUNTY, ILLINOIS, THIS
DATED:, A.D., 20	DAY OF, A.D., 20
MORTGAGEE	
	COUNTY CLERK
BY: PRESIDENT	
PRESIDENT	RECORDER'S CERTIFICATE
ATTEST:SFCRFTARY	STATE OF ILLINOIS)
SECRETARY) SS COUNTY OF DU PAGE)
MORTGAGEE NOTARY PUBLIC	
STATE OF)	THIS INSTRUMENT NO WAS FILED FOR RECORD IN
STATE OF))SS COUNTY OF)	THE RECORDER'S OFFICE OF DUPAGE COUNTY, ILLINOIS ON THE DAY OF
OOOM OI/	, A.D., 20, AT O'CLOCKM.
A NOTARY	
I,, A NOTARY PUBLIC IN AND FOR THE COUNTY AND STATE AFORESAID, DO HEREBY CERTIFY THAT	
AND	RECORDER
OF WHO IS/ARE PERSONALLY KNOWN TO ME TO BE THE	
SAME WHOSE NAME(S) IS/ARE SUBSCRIBED TO THE FOREGOING CERTIFICATE, APPEARED BEFORE ME THIS DAY IN PERSON AND ACKNOWLEDGED THAT HE/SHE/THEY DID SIGN AND DELIVER THIS INSTRUMENT AS A FREE AND VOLUNTARY ACT FOR THE USES AND DURDOSES	
DELIVER THIS INSTRUMENT AS A FREE AND VOLUNTARY ACT FOR THE USES AND PURPOSES HEREIN SET FORTH.	
GIVEN UNDER MY HAND AND NOTORIAL SEAL THIS DAY OF, A.D. 20	

NOTARY PUBLIC

GRADING/DRAINAGE CERTIFICATE

I, STEVEN M. SHANHOLTZER, A REGISTERED PROFESSIONAL ENGINEER IN ILLINOIS, AND

HEREON OR HIS DULY AUTHORIZED ATTORNEY DO HEREBY STATE, THAT TO THE BEST OF OUR KNOWLEDGE AND BELIEF, REASONABLE PROVISION HAS BEEN MADE FOR COLLECTION AND DIVERSION OF SUCH SURFACE WATERS INTO PUBLIC AREAS OR DRAINS WHICH THE SUBDIVIDER HAS A RIGHT TO USE, AND THAT SUCH SURFACE WATERS WILL BE PLANNED FOR IN ACCORDANCE WITH GENERALLY ACCEPTED ENGINEERING PRACTICES SO AS TO REDUCE THE LIKELIHOOD OF DAMAGE TO THE ADJOINING PROPERTY BECAUSE OF THE CONSTRUCTION OF THE SUBDIVISION. FURTHER, AS ENGINEER, I HEREBY CERTIFY THAT THE PROPERTY WHICH IS THE SUBJECT OF THIS SUBDIVISION OR ANY PART THEREOF IS WITHIN AN AREA DESIGNATED AS ZONE X, AREAS DETERMINED TO BE OUTSIDE THE 0.2% ANNUAL CHANCE FLOODPLAIN PER THE FEDERAL EMERGENCY MANAGEMENT AGENCY FIRM COMMUNITY PANEL NUMBER 17043C0806H HAVING AN EFFECTIVE DATE OF DECEMBER 16, 2004. THESE MAPS DO NOT NECESSARILY SHOW ALL AREAS SUBJECT TO FLOODING IN THE COMMUNITY OR ALL PLANIMETRIC FEATURES OUTSIDE SPECIAL FLOOD HAZARD AREAS. THIS DOES NOT GUARANTEE THAT THE SURVEYED PROPERTY WILL OR WILL NOT FLOOD.

, THE OWNER OF THE LAND DEPICTED

DATED	THIS		DAY OF _	 	 ,	A.D.,	20	·
BY:								
	(OWNER/ATTORNE	Υ					

COUNTY HIGHWAY CERTIFICATE

PROFESSIONAL ENGINEER

STATE OF ILLINOIS)
)SS
COUNTY OF Dupage)

THIS PLAT HAS BEEN APPROVED BY THE DUPAGE COUNTY DIVISION OF TRANSPORTATION WITH RESPECT TO ROADWAY ACCESS TO COUNTY HIGHWAY # 38, 63RD STREET PURSUANT TO 765 ILCS 205/2; HOWEVER, A HIGHWAY PERMIT IS REQUIRED OF THE OWNER OF THE PROPERTY PRIOR TO CONSTRUCTION WITHIN THE COUNTY'S RIGHT-OF-WAY.

BY: ______COUNTY ENGINEER

CROSS ACCESS EASEMENT PROVISIONS

A NON-EXCLUSIVE EASEMENT FOR FOR THE BENEFIT OF ALL LOTS IN THIS SUBDIVISION AND THE EXCEPTION PARCEL SHOWN HEREON OVER ALL THE SHADED AREAS SHOWN HEREON AND LABELED CROSS ACCESS EASEMENT IS HEREBY GRANTED. ALL MAINTENANCE AND REPAIR OF THE CROSS ACCESS EASEMENT AREA SHALL BE MADE SO AS TO INTERFERE AS LITTLE AS PRACTICABLE WITH THE OPERATIONS OF ANY OF THE OWNERS OF THE LOTS OR THEIR EMPLOYEES, AGENTS, TENANTS, INVITEES OR LICENSEES.

COMMONWEALTH EDISON AND AT&T EASEMENT PROVISIONS

AN EASEMENT FOR SERVING THE SUBDIVISION AND OTHER PROPERTY WITH ELECTRIC AND COMMUNICATION SERVICE IS HEREBY RESERVED FOR AND GRANTED TO:

COM ED COMPANY AT&T COMPANY

THEIR RESPECTIVE LICENSEES, SUCCESSORS, AND ASSIGNS, JOINTLY AND SEVERALLY, TO CONSTRUCT, OPERATE, REPAIR, MAINTAIN, MODIFY, RECONSTRUCT, REPLACE, SUPPLEMENT, RELOCATE AND REMOVE, FROM TIME TO TIME, POLES, GUYS, ANCHORS, WIRES, CABLES, CONDUITS, MANHOLES, TRANSFORMERS, PEDESTALS, EQUIPMENT CABINETS OR OTHER, FACILITIES USED IN CONNECTION WITH OVERHEAD AND UNDERGROUND TRANSMISSION AND DISTRIBUTION OF ELECTRICITY COMMUNICATIONS, SOUNDS AND SIGNALS IN, OVER, UNDER, ACROSS, ALONG AND UPON THE SURFACE OF THE PROPERTY SHOWN WITHIN THE DASHED OR DOTTED LINES ON THE PLAT AND MARKED "PUBLIC UTILITY EASEMENT", "P.U.E.", THE PROPERTY DESIGNATED IN THE DECLARATION OF CONDOMINIUM AND/OR ON THIS PLAT AS "COMMON ELEMENTS", AND THE PROPERTY DESIGNATED ON THE PLAT AS "COMMON AREA OR AREAS", AND THE PROPERTY DESIGNATED ON THE PLAT FOR STREETS AND ALLEYS, WHETHER PUBLIC OR PRIVATE, TOGETHER WITH THE RIGHT TO INSTALL REQUIRED SERVICE CONNECTIONS OVER OR UNDER THE SURFACE OF EACH LOT AND COMMON AREA OR AREAS TO SERVE IMPROVEMENTS THEREON, OR ON ADJACENT LOTS, AND COMMON AREA OR AREAS, THE RIGHT TO CUT, TRIM OR REMOVE TREES, BUSHES, ROOTS AND SAPLINGS AND TO CLEAR OBSTRUCTIONS FROM THE SURFACE AND SUBSURFACE AS MAY BE REASONABLY REQUIRED INCIDENT TO THE RIGHTS HEREIN GIVEN, AND THE RIGHT TO ENTER UPON THE SUBDIVIDED PROPERTY FOR ALL SUCH PURPOSES. OBSTRUCTIONS SHALL NOT BE PLACED OVER GRANTEES' FACILITIES OR IN, UPON OR OVER THE PROPERTY WITHIN THE DASHED OR DOTTED LINES MARKED "PUBLIC UTILITY EASEMENT", "P.U.E.", WITHOUT THE PRIOR WRITTEN CONSENT OF GRANTEES. AFTER INSTALLATION OF ANY SUCH FACILITIES, THE GRADE OF THE SUBDIVIDED PROPERTY SHALL NOT BE ALTERED IN A MANNER SO AS TO INTERFERE WITH THE PROPER OPERATION AND MAINTENANCE THEREOF. THE TERM "COMMON ELEMENTS" SHALL HAVE THE MEANING SET FORTH IN SUCH TERM IN THE "CONDOMINIUM PROPERTY ACT", CHAPTER 765 ILCS 605/2, AS AMENDED FROM TIME TO TIME. THE TERM "COMMON AREA OR AREAS" IS DEFINED AS A LOT, PARCEL OR AREA OF REAL PROPERTY, THE BENEFICIAL USE AND ENJOYMENT OF WHICH IS RESERVED IN WHOLE AS AN APPORTIONMENT TO THE SEPARATELY OWNED LOTS, PARCEL OR AREAS WITHIN THE PLANNED DEVELOPMENT, EVEN THOUGH SUCH BE OTHERWISE DESIGNATED ON THE PLAT BY TERMS SUCH AS "OUTLOTS", "COMMON ELEMENTS", "OPEN SPACE", "OPEN AREA", "COMMON GROUND", "PARKING" AND "COMMON AREA". THE TERM "COMMON AREA OR AREAS", AND "COMMON ELEMENTS" INCLUDES REAL PROPERTY SURFACED WITH INTERIOR DRIVEWAYS AND WALKWAYS, BUT EXCLUDES REAL PROPERTY PHYSICALLY OCCUPIED BY A BUILDING, SERVICE BUSINESS DISTRICT OR STRUCTURES SUCH AS A POOL OR RETENTION POND OR MECHANICAL EQUIPMENT. RELOCATION OF FACILITIES WILL BE DONE BY GRANTEES AT COST OF GRANTOR/LOT OWNER, UPON WRITTEN REQUEST.

DECLARATION OF RESTRICTIVE COVENANTS

THE UNDERSIGNED OWNER HEREBY DECLARES THAT THE REAL PROPERTY DESCRIBED IN AND DEPICTED ON THIS PLAT OF SUBDIVISION SHALL BE HELD, TRANSFERRED, SOLD, CONVEYED AND OCCUPIED SUBJECT TO THE FOLLOWING COVENANTS AND RESTRICTIONS:

(a) ALL PUBLIC UTILITY STRUCTURES AND FACILITIES, WHETHER LOCATED ON PUBLIC OR PRIVATE PROPERTY, SHALL BE CONSTRUCTED WHOLLY UNDERGROUND, EXCEPT FOR TRANSFORMERS, TRANSFORMER PADS, LIGHT POLES, REGULATORS, VALVES, MARKERS AND SIMILAR STRUCTURES APPROVED BY THE VILLAGE ENGINEER OF THE VILLAGE OF DOWNERS GROVE PRIOR TO RECORDING OF THIS PLAT OF SUBDIVISION.

(b) AN EASEMENT FOR SERVING THE SUBDIVISION, AND OTHER PROPERTY WITH STORM DRAINAGE, SANITARY SEWER, STREET LIGHTING, POTABLE WATER SERVICE AND OTHER PUBLIC UTILITY SERVICES, IS HEREBY RESERVED FOR AND GRANTED TO THE VILLAGE OF DOWNERS GROVE AND DOWNERS GROVE SANITARY DISTRICT, THEIR RESPECTIVE SUCCESSORS AND ASSIGNS, JOINTLY AND SEPARATELY, TO INSTALL, OPERATE AND MAINTAIN AND REMOVE, FROM TIME TO TIME, FACILITIES AND EQUIPMENT USED IN CONNECTION WITH THE PUBLIC WATER SUPPLY, TRANSMISSION LINES, SANITARY SEWERS, STORM DRAINAGE SYSTEM, STREET LIGHTING SYSTEM, OR OTHER PUBLIC UTILITY SERVICE, AND THEIR APPURTENANCES, EITHER ON, OVER, ACROSS, BELOW OR THROUGH THE GROUND SHOWN WITHIN THE DOTTED LINES ON THE PLAT MARKED "PUBLIC UTILITY AND/OR DRAINAGE EASEMENT", OR SIMILAR LANGUAGE DESIGNATING A STORMWATER OR SEWER EASEMENT, AND THE PROPERTY DESIGNATED ON THE PLAT FOR STREETS AND ALLEYS. TOGETHER WITH THE RIGHT TO CUT, TRIM OR REMOVE TREES, BUSHES AND ROOTS AS MAY BE REASONABLY REQUIRED INCIDENT TO THE RIGHTS HEREIN GIVEN, AND THE RIGHT TO ENTER UPON THE SUBDIVIDED PROPERTY FOR ALL SUCH PURPOSES. OBSTRUCTIONS SHALL NOT BE PLACED OVER GRANTEES' FACILITIES OR IN, UPON OR OVER, THE PROPERTY WITHIN THE STORMWATER OR SEWER EASEMENT WITHOUT THE PRIOR WRITTEN CONSENT OF GRANTEES. AFTER INSTALLATION OF ANY SUCH FACILITIES, THE GRADE OF THE SUBDIVIDED PROPERTY SHALL NOT BE ALTERED IN A MANNER SO AS TO INTERFERE WITH THE PROPER OPERATION AND MAINTENANCE THEREOF.

PERMISSION TO RECORD

STATE OF ILLINOIS)
)SS
COUNTY OF DUPAGE)

I, WILLIAM W. WRIGHT, ILLINOIS PROFESSIONAL LAND SURVEYOR NO. 035-003502, HEREBY GRANT PERMISSION TO A REPRESENTATIVE OF DOWNERS GROVE, ILLINOIS TO RECORD THIS PLAT ON OR BEFORE DECEMBER 1, 2017. HE/SHE SHALL SHOW PROPER IDENTIFICATION AND PROVIDE THIS SURVEYOR WITH A RECORDED COPY OF SAID PLAT.

DATED THIS _____, A.D. 20___.

ILLINOIS PROFESSIONAL LAND SURVEYOR NO. 035-003502 LICENSE EXPIRES: NOVEMBER 30, 2019

DESIGN FIRM PROFESSIONAL REGISTRATION NO. 184003350

SURVEYOR'S CERTIFICATE

STATE OF ILLINOIS)
)SS
COUNTY OF DuPAGE)

THIS IS TO DECLARE THAT THE FOLLOWING DESCRIBED PROPERTY WAS SURVEYED AND SUBDIVIDED BY MANHARD CONSULTING, LTD., UNDER THE SUPERVISION OF AN ILLINOIS PROFESSIONAL LAND SURVEYOR AND THAT THE PLAT HEREON DRAWN IS A CORRECT REPRESENTATION OF SAID SURVEY AND SUBDIVISION:

LOTS 1, 2 AND 3 IN MEADOWBROOK SUBDIVISION, BEING A SUBDIVISION OF THAT PAT OF THE NORTHEAST QUARTER OF SECTION 24, TOWNSHIP 38 NORTH, RANGE 10 EAST OF THE THIRD PRINCIPAL MERIDIAN, ACCORDING TO THE PLAT THEREOF RECORDED FEBRUARY 1, 1973 AS DOCUMENT NO. R73-5824 AND CERTIFICATES OF CORRECTION RECORDED AUGUST 24, 1976 AS DOCUMENT NO. R76-58800 AND DOCUMENT NO. R76-55801, IN Dupage County, Illinois, EXCEPTING THEREFROM THAT PART CONVEYED TO DUPAGE COUNTY DIVISION OF TRANSPORTATION BY DEEDS RECORDED SEPTEMBER 10, 1997 AS DOCUMENT NO. R97-135130 AND DOCUMENT NO. R97-135136.

ALSO INCLUDING

LOT 1 IN MEADOWBROOK ASSESSMENT PLAT OF PART OF THE NORTHEAST QUARTER OF SECTION 24, TOWNSHIP 38 NORTH, RANGE 10 EAST OF THE THIRD PRINCIPAL MERIDIAN, ACCORDING TO THE PLAT THEREOF RECORDED APRIL 23, 1992 AS DOCUMENT NO. R92-075488, IN DuPAGE COUNTY, ILLINOIS.

SUBDIVIDED PROPERTY CONTAINS 18.892 ACRES, MORE OR LESS AND ALL DISTANCES ARE SHOWN IN FEET AND DECIMAL PARTS THEREOF.

5/8 DIAMETER BY 24" LONG IRON RODS WILL BE SET AT ALL SUBDIVISION CORNERS, LOT CORNERS, POINTS OF CURVATURE AND POINTS OF TANGENCY IN COMPLIANCE WITH ILLINOIS STATUTES AND APPLICABLE ORDINANCES, UNLESS OTHERWISE NOTED.

THIS IS ALSO TO DECLARE THAT THE PROPERTY AS DESCRIBED ON THE ANNEXED PLAT LIES WITHIN THE CORPORATE LIMITS OF DOWNERS GROVE, DUPAGE COUNTY, ILLINOIS WHICH HAS ADOPTED A VILLAGE PLAN AND IS EXERCISING THE SPECIAL POWER AUTHORIZED BY DIVISION 12 OF ARTICLE 11 OF THE ILLINOIS MUNICIPAL CODE.

THIS IS ALSO TO DECLARE THAT THE FEDERAL EMERGENCY MANAGEMENT AGENCY FIRM COMMUNITY PANEL NUMBER 17043C0806H HAVING AN EFFECTIVE DATE OF DECEMBER 16, 2004 INDICATES THAT THE ABOVE DESCRIBED PROPERTY LIES WITHIN AN AREA DESIGNATED AS ZONE X, AREAS DETERMINED TO BE OUTSIDE THE 0.2% ANNUAL CHANCE FLOODPLAIN. THESE MAPS DO NOT NECESSARILY SHOW ALL AREAS SUBJECT TO FLOODING IN THE COMMUNITY OR ALL PLANIMETRIC FEATURES OUTSIDE SPECIAL FLOOD HAZARD AREAS. THIS DOES NOT GUARANTEE THAT THE SURVEYED PROPERTY WILL OR WILL NOT FLOOD.

GIVEN UNDER MY HAND AND SEAL THIS ____ DAY OF ______,A.D. 20__.

ILLINOIS PROFESSIONAL LAND SURVEYOR NO. 035-003502 LICENSE EXPIRES: NOVEMBER 30, 2018

DESIGN FIRM PROFESSIONAL REGISTRATION NO. 184003350 EXPIRES APRIL 30, 2019

Tanhard.com
r Engineers
• Diamors

CO Springer Drive, Lombard, IL 60148 ph: 630.691.8500 fx: 630.691.8585 ms Civil Engineers • Viveter Resource Engineers • Weter & Westewater Construction Managers • Environmental Scientists • Indicate Architects

MEADOWBROOK FIRST RESUBDIVISION
DOWNERS GROVE, ILLINOIS
FINAL PLAT OF RESUBDIVISION

PROJ. MGR.: SAS
PROJ. ASSOC.: WW

DRAWN BY: WW

DATE: 01/18/18

SCALE: N/A

SHEET

3/18

DRAFT PC MINUTES – 2/5/18

17-PLC-0041: A petition seeking approval of a Planned Unit Development Amendment to construct a new convenience goods store, a Special Use for a drive-through facility, and a Plat of Subdivision. The property is zoned B-2/PUD, General Retail Business/Planned Unit Development. The property is located at the southwest corner of 63rd Street and Woodward Avenue, commonly known as 2001 63rd Street, Downers Grove, IL (PINs 08-24-202-008, -009) FL Cedar, LLC, Petitioner and Owner.

Ms. Leitschuh said that a similar petition was before the Plan Commission in August of 2017 as Case #16-PLC-0062, and was referred to the Village Council with a positive recommendation, and subsequently approved by the Village Council. This PUD amendment would substitute some of the revised elements while maintaining the other previously established conditions including improvements to the Meadowbrook Shopping Center that are currently under review or have already been approved. This petition is focusing on the Walgreens area of the development and a new adjacent outlot. Previously approved conditions will be connected to this request as part of the PUD, unless something is rescinded.

Ms. Leitschuh displayed a plan showing the location of the proposed Walgreen's. The site has an existing vacant restaurant that will be demolished and a 10,500 square foot building will be constructed at the location. She reviewed the surrounding zoning. When the Petitioner was last before the Commission, the Comprehensive Plan was still under review; however, with the approval of the Comprehensive Plan this shopping center is now shown as mixed use for future consideration.

Ms. Leitschuh said the plan is substantially different in design from the original presentation. She provided comparison photos of the previous and present plans. This proposal creates two lots which includes a new outlot. Lot 3 will consist of 1.08 acres, Lot 4 will have 0.52 acres with a combined acreage of 1.6 acres. The shopping plaza is 18.86 acres. Lot 4 will be reserved for future commercial development. In the interim the pavement will be eliminated and that lot will be seeded to reduce the shopping center's overall impervious surface.

Regarding the Walgreen's building, it is proposed to be 10,500 square feet on Lot 3. The previous proposed building was 14,500 square feet on the western side of the lot with 66 parking spaces and a drive-thru on the western side. The loading, storage, trash area was located on the southern portion of the property. The current site plan is for a building reduced by 4,000 square feet, provides 43 parking spaces and a drive-thru located along the southern portion of the building. The loading area and trash enclosure are along the eastern wall. DuPage County said they would like a portion of the right-of-way dedicated to them because of the existence of a watermain at that location. The only nonconformities in the proposal are: the location of the storage and trash area, the setback of the drive-thru, and the pedestrian connection to Woodward Avenue. Staff noted that the location of the loading/trash area has a substantial amount of screening.

ORD 2018-7680 Page 85 of 89

DRAFT PC MINUTES - 2/5/18

Ms. Leitschuh displayed elevation drawings for the current site plan. The facades are broken up by a light brown modern block face, a white smaller brick face, and a horizontal wood panel, all made of fiber cement board. She reviewed other design elements for the building. She pointed out that a condition of approval was included in the staff report relative to extending the EIFS overhang along the eastern wall because of its location adjacent to a major intersection. Walgreens is allowed to have signage as proposed, as it complies with the square-footage requirements of the sign ordinance, including a single tenant monument sign at the northwestern corner.

Regarding landscaping, 26% of the property will be open space, and 22% of the property is street yard open space. Technically only 5% is required. A total of 34 shade trees will be provided, 13 within the street yard, 12 in the interior islands or dividers, and 9 within the entrance aisle. They surpass the requirements. There will be substantial screening around the main corner, the dumpster enclosure and the loading area.

Ms. Leitschuh reviewed the traffic turning radius exhibits to explain that these were reviewed by the Fire Department to assure that all access requirements have been met. The drive-thru will be one-directional with a bypass lane. All requirements for the Subdivision Ordinance are met. They are reconfiguring four lots into five lots. She displayed how the lots are impacted. There is a newly created Lot 2, Lot 3 which is the Walgreens lot, and Lot 4 which is the outlot. She explained there is a reciprocal agreement between all these properties that they shall have continuous shared access between them. There is also the standard public utility and drainage easement that will be required on Lots 3 and Lot 4.

Ms. Leitschuh reviewed the Zoning Requirements as shown on Page 5 of Staff's report dated February 5, 2018. The street yard dumpster loading area provides adequate screening using physical walls and landscape screening. The setback between the drive-thru and interior lot line does not negatively impact any one aspect of the development. Regarding a pedestrian connection, Staff recommends that a condition be included to provide a pedestrian connection from Woodward Avenue across the southern property line of lot 3.

Ms. Leitschuh stated that under the Comprehensive Plan this area is identified as a mixed use, which is new for this area. It is a mix of land uses within a continuous geographic boundary, with the 63rd Street Focus Plan encouraging commercial expansion at key intersections and improving the vitality of aging shopping centers. This is a catalyst site for reinvestment with the uses potentially being expanded to include a mix of commercial and residential, although it does not have to be. It merely provides the opportunity for that type of mix. The criteria for a Planned Unit Development are met. She noted that Staff has recommended ten conditions for consideration in evaluating approval of the petition. The special use is specifically for the drive-thru and Staff finds that the drive-thru is an appropriate use and is placed appropriately on the site.

DRAFT PC MINUTES – 2/5/18

Ch. Rickard asked where on the site plan the pedestrian connection is located. Ms. Leitschuh showed that location.

Mr. Boyle (??) asked about the direction of the drive-thru. Ms. Leitschuh showed the travel path of the drive-thru. He asked whether there is screening at the exit onto Woodward, and Ms. Leitschuh said that they are planning dense evergreens at that exit point. Mr. Boyle asked about the shared access to the south of the buildings and whether there is a shared-access easement for the back of the property. Ms. Leitschuh said it was not part of the current proposal.

Ch. Rickard then called upon the Petitioner to make its presentation.

Perrine Knight, representing the owner said there were other members of their staff present to respond to specific questions. She reviewed their previous appearance before the Commission and Village Council. They have worked closely with Staff on the present plan before the Commission. She brought samples of the materials to be used in the construction of the building. Previous concerns about the EIFS product were addressed with a change of materials that is being widely used today in commercial construction. Many revisions were made based on Staff's recommendations for the location of the building. Ms. Knight said that the improvements to the shopping center are ready to proceed as soon as the construction of the Walgreens begins. The drive-thru location addresses concerns about lights disturbing residential areas.

Ch. Rickard asked whether the Petitioner is in agreement with Staff's condition regarding extending the EIFS, and its condition regarding the pedestrian connection. Ms. Knight said that Walgreens is in agreement with those conditions if they are required to obtain approval. She did note that the grading of the lot is very challenging and they would prefer to keep the trees if they can.

Mr. Boyle asked what the typical size is for a Walgreens and Ms. Knight replied that 10,500 square feet is their new standard store. Mr. Boyle said he thought the finishes were good and asked if this is a drastic change in materials for Walgreens.

John Bradshaw, architect for Walgreens, said this is not standard for Walgreens. He said that the entry is a new design as well because it is the most convenient spot for the handicap stalls. He said this may be the first location to introduce Walgreens' new design.

Steve Shanholtzer of Manhard Consulting responded to a question by Mr. Boyle concerning the proximity of the drive-thru, saying they added signage and a stop bar at the drive-thru and intersection for safety.

Mr. Kulovany asked about the height of the screening at the exit point. Mr. Shanholtzer said there are parkway trees required by the Ordinance. Screening is further north, so the only barrier is the curb between the access and Woodward.

ORD 2018-7680 Page 87 of 89

DRAFT PC MINUTES - 2/5/18

Ms. Gassen said that overall she thought the changes showed great improvements. She appreciates all the concerns that were addressed by the Petitioner. Regarding the EIFS on the east façade, she would have no problem eliminating that as a condition for approval.

Ch. Rickard said he also doesn't believe it is necessary as a condition.

Mr. Kulovany said he appreciates the petitioner changing the materials which are much more durable and built to last.

Ms. Gassen then asked about Condition #9 and the grading issue that was alluded to earlier. Mr. Shanholtzer said that 63rd street is relatively high and then the site slopes down. They wanted to get the building as high as possible for better visibility by the public. The sidewalk along Woodward which also slopes downward could never be extended to the west and still be ADA compliant. ADA requires 5% as the maximum grade. The connection would exceed that grade. The original petition showed a connection along the northeast corner for connectivity for both sidewalks. If there was future development on Outlot 4 the walk could continue west. Ms. Gassen asked if there would be two on the north side, and whether there would be a connection point to the store. Mr. Shanholtzer then used the site plan to show how the connection would occur. He described the location of private and public sidewalks, and noted the amount of grade transition. Ms. Gassen said she wasn't sure whether they should keep that condition or not, because in driving that location she could see the grade changes.

Mr. Kulovany said he had conflicting thoughts on this regarding mixing pedestrians with the vehicular traffic. He noted also that Prentiss Creek's apartment complex is just south of there, and there might be residents of that complex who would prefer to walk to Walgreens and would need that access. Mr. Shanholtzer said he has no data re foottraffic. They want to be sure that pedestrians cross at the safest point possible. They would encourage everyone to come to the front of the store and then cross over. Ms. Knight said they have worked with Staff on this but noted that it is difficult for them to be ADA compliant with the challenges of the site. They are working with what the location presents.

Ch. Rickard did not ask for public input, as there were no members of the public present.

Ch. Rickard said that with all the parking in the shopping center, everyone is walking through drive aisles to get to buildings. He thinks people will head through the parking lot. Mr. Kulovany agrees that people would cut across the parking area.

Mr. Quirk said he doesn't expect to see anyone walking to Walgreens. He doesn't think it makes a difference where the connection is located, and he thinks it will be underutilized. They are looking at a new configuration of the drive-thru and assurance that the plan meets the standards.

ORD 2018-7680 Page 88 of 89

DRAFT PC MINUTES – 2/5/18

Mr. Maurer raised a question regarding semi-trailers making deliveries and he said he'd like to see how a semi-trailer can get in there without blocking the drive-thru. Ms. Knight replied that they did review that. Deliveries to Walgreens are once a week and last about an hour and a half. It is a limited window of inconvenience, but there should still be no access problem.

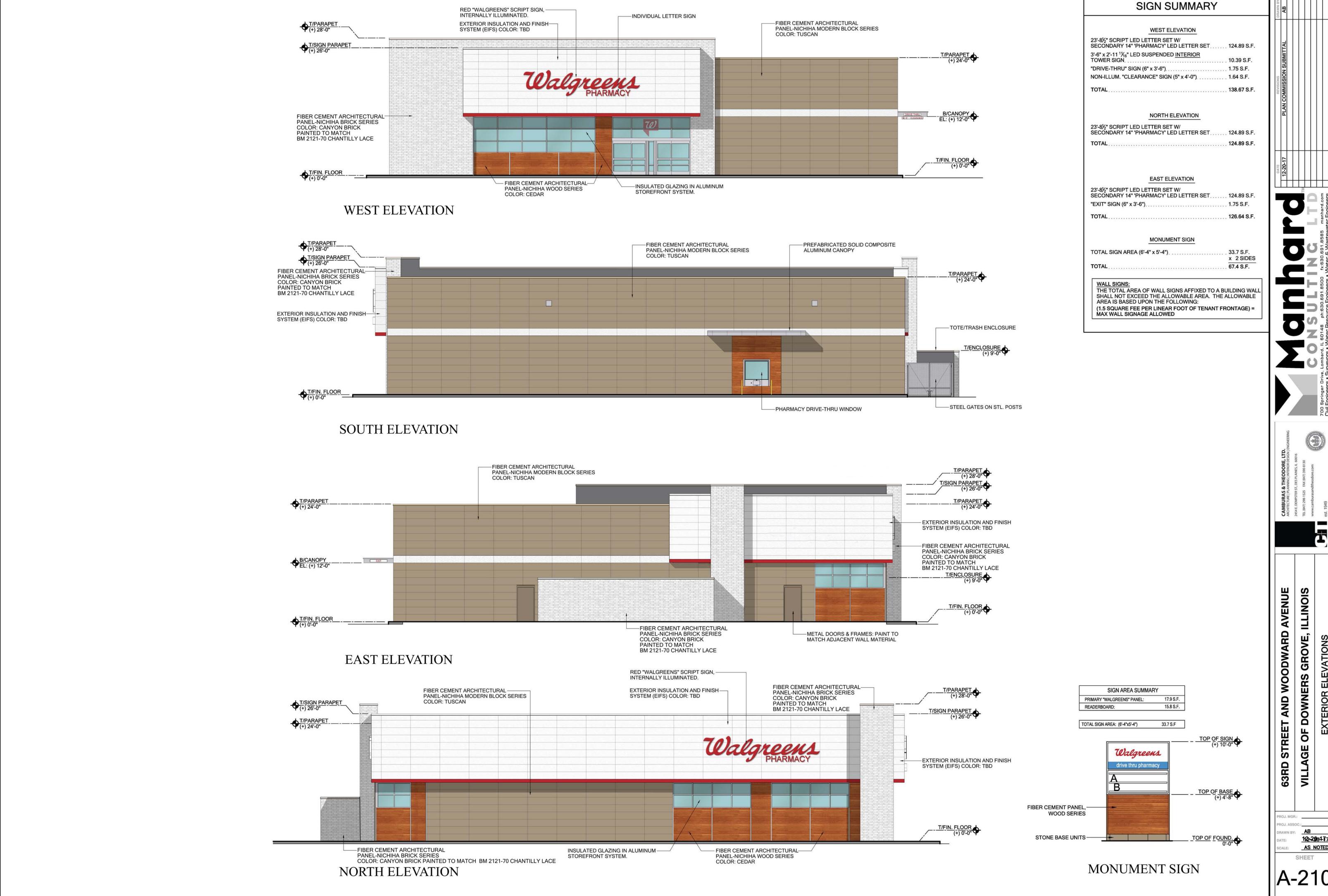
Ch. Rickard asked for closing comments from the Petitioner, and Ms. Knight thanked the Commission and appreciated their comments about the changes that were made.

Ch. Richard closed the public hearing.

Ch. Rickard noted that Staff feels all the standards have been met as documented in their report dated February 5, 2018. He asked if any Commissioners had a differing opinion and none did. Ch. Rickard then asked whether Conditions 6 and 9 are still thought to be necessary after previous discussion. No one expressed opposition to removing those conditions. Mr. Quirk raised a question about adding sidewalk for wheelchair people. Mr. Kulovany said he thought the shopping center would be a dangerous place to try and introduce pedestrians. He believes people will cut the corner. He is more concerned about mixing traffic and pedestrians.

Regarding improvements to the shopping center, Ms. Leitschuh said that this petition only rescinds things relevant to the specific site plan. Everything previously approved a year ago must be completed. Any changes made were related to the façade, but the Village Council made no real modifications to the plan at that time. She said the Petitioner would be held accountable to what was previously approved, including the overall improvements to the shopping center.

Ms. Gassen moved with regard to File 17-PLC-0041 that the Plan Commission forward a positive recommendation to the Village Council to approve this request for a PUD, Special Use and Plat of Subdivision subject to the conditions listed on Page 9 and 10 of Staff's February 5, 2018 report, with the exception of condition 6 related to the extension of the EIFS along the Woodward side, and condition 9 concerning the pedestrian connection from Woodward Avenue across the southern property line of lot 3. Mr. Quirk seconded the Motion.


AYES: Ms. Gassen, Mr. Quirk, Mr. Boyle, Mr. Kulovany, Mr. Maurer,

Ms. Rollins, Ch. Rickard

NAYS: None

The Motion passed unanimously.

Page 89 of 89

1/2-200177 AS NOTED