ORD 2025-10692 Page 1 of 167

VILLAGE OF DOWNERS GROVE Report for the Village 2/18/2025

SUBJECT:	SUBMITTED BY:
	Stan Popovich, AICP Director of Community Development

SYNOPSIS

The petitioner is requesting approval of a Special Use for a drive-through at 1250-1254 Ogden Avenue.

STRATEGIC PLAN ALIGNMENT

The goals for 2023-2025 include a *Strong and Diverse Local Economy*.

FISCAL IMPACT

N/A

RECOMMENDATION

Approval on the March 4, 2025 active agenda per the Planning and Zoning Commission's 8:0 positive recommendation. The Planning and Zoning Commission found that the proposal is an appropriate use in the district compatible with the Comprehensive Plan and meets all standards for approval for a Special Use found in Section 28.12.050 of the Municipal Code.

BACKGROUND

Property Information and Zoning Request

The petitioner is requesting approval of a Special Use to construct a drive-through facility for a multi-tenant commercial building at 1250-1254 Ogden Avenue. The property is located west of the intersection of Saratoga and Ogden Avenue and is zoned B3, General Services and Highway Business. The petitioner is proposing to construct a new 9,606 square foot multi-tenant retail building, with related parking lot improvements and landscaping.

The drive-through provides queueing for thirteen vehicles. The property is currently served by two existing full movement accesses onto Ogden Avenue, which will remain in place. Per the site plan, cross access to both neighboring properties will be provided.

Compliance with the Comprehensive Plan

The subject property is designated as Corridor Commercial in the Comprehensive Plan and specifically the site is designated as part of the Ogden Avenue Focus Area. The Ogden Avenue Focus Area key concepts include a blend of neighborhood-oriented commercial retail, offices, smaller regional retail and service uses, special attention to pedestrian circulation, cross-access between lots and overall enhanced appearance and the installation of perimeter and interior landscaping in all parking lots within the subarea.

ORD 2025-10692 Page 2 of 167

The proposed development improves pedestrian connectivity by installing a new sidewalk along Ogden Avenue, provides enhanced landscaping and screening in order to provide a buffer to the residential uses to the north and continues to build on a more attractive image along Ogden Avenue, and allows for a potential cross-access agreement with the property immediately to the east and west.

Compliance with the Zoning Ordinance

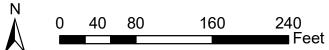
The property is zoned B-3, General Services and Highway Business District. The proposed multi-tenant retail building with a drive-through use is listed as an allowable Special Use in this district. The bulk requirements of the proposed building in the B-3 zoning district is summarized in the Planning and Zoning Commission Staff Report.

Public Comment

Prior to the Planning and Zoning Commission meeting, staff received two inquiries regarding the proposed development, which were general in nature. One person provided public comment during the public hearing. Their comments were concerning traffic from the proposed development. The petitioner stated that the traffic study found that the traffic generated by the development can be accommodated by the existing area roadway system.

ATTACHMENTS

Aerial Map


Ordinance

Staff Report with attachments dated February 3, 2025

Draft Planning and Zoning Commission Minutes dated February 3, 2025

ORD 2025-10692 Page 3 of 167

1250-1254 Ogden Special Use – 24-PZC-0008

ORDINANCE NO. _____

AN ORDINANCE AUTHORIZING A SPECIAL USE FOR 1250-1254 OGDEN AVENUE TO PERMIT A DRIVE-THROUGH

WHEREAS, the following described property, to wit:

THAT PART OF LOT 1 IN AMERICAN LEGION POST 80 SUBDIVISION PLAT OF PART OF KALBRIER AND CASSIDY'S SURVEY OF PART OF THE EAST HALF OF SECTION 6, TOWNSHIP 38 NORTH, RANGE 11 EAST OF THE THIRD PRINCIPAL MERIDIAN, ACCORDING TO THE PLAT THEREOF RECORDED JANUARY 12, 1959, AS DOCUMENT 908714, LYING WESTERLY OF A LINE JOINING A POINT IN THE NORTH LINE OF SAID LOT, 183.92 FEET EAST OF THE NORTHWEST CORNER THEREOF AND A POINT IN THE SOUTHERLY LINE OF SAID LOT 205.69 FEET EASTERLY OF THE SOUTHWEST CORNER THEREOF, IN DUPAGE COUNTY, ILLINOIS.

Commonly known as: 1250 Ogden Avenue, Downers Grove, IL 60515

PIN: 09-06-403-005

(hereinafter referred to as the "Property") is presently zoned in the "B-3, General Services and Highway Business District" under the Comprehensive Zoning Ordinance of the Village of Downers Grove; and

WHEREAS, the owner of the Property has filed with the Planning and Zoning Commission, a written petition conforming to the requirements of the Zoning Ordinance, requesting that a Special Use per Section 28.12.050 of the Zoning Ordinance be granted to allow a drive-through.

WHEREAS, such petition was referred to the Planning and Zoning Commission of the Village of Downers Grove, and said Planning and Zoning Commission has given the required public notice, has conducted a public hearing for the petition on February 3, 2025 and has made its findings and recommendations, all in accordance with the statutes of the State of Illinois and the ordinances of the Village of Downers Grove; and,

WHEREAS, the Planning and Zoning Commission has recommended approval of the Special Use, subject to certain conditions; and,

WHEREAS, the Village Council finds that the evidence presented in support of said petition, as stated in the aforesaid findings and recommendations of the Planning and Zoning Commission, is such as to establish the following:

- (1) that the proposed use is expressly authorized as a special use in the district in which it is to be located:
- (2) that the proposed use will not, in the particular case, be detrimental to the health, safety, or general welfare of the community;
- (3) that the proposed use will not be injurious to the use and enjoyment of other property in the immediate area for the purposes already permitted, nor substantially diminish or impair property values within the neighborhood;
 - (4) that the establishment of the special use will not impede the normal and orderly development

and improvement of adjacent property for uses permitted in the district.

NOW, THEREFORE, BE IT ORDAINED by the Council of the Village of Downers Grove, in DuPage County, Illinois, as follows:

<u>SECTION 1</u>. That Special Use of the Property is hereby granted to allow a drive-through.

SECTION 2. This approval is subject to the following conditions:

- 1. The proposed Special Use for a drive-through use shall substantially conform to the proposed New Multi-Tenant Building Plans for 1250-1254 Ogden Avenue drawings prepared by Bono Consulting Civil Engineering dated December 26, 2024, last revised January 21, 2025, architectural drawings prepared by CJ Architects dated December 27, 2024, last revised January 21, 2025, except as such plans may be modified to conform to Village codes, ordinances, and policies.
- 2. Prior to the issuance of a building permit, the Petitioner shall submit evidence of a cross access easement for the immediately adjacent properties to the west and east of the subject property.
- 3. That the brick building materials constructed at the base of the building will be carried through to the roofline in columns, pending initial tenant sign placement.

SECTION 3. The above conditions are hereby made part of the terms under which the Special Use is granted. Violation of any or all of such conditions shall be deemed a violation of the Village of Downers Grove Zoning Ordinance, the penalty for which may include, but is not limited to, a fine and/or revocation of the Special Use granted herein.

<u>SECTION 4</u>. It is the Petitioner's obligation to maintain compliance with all applicable Federal, State, County and Village laws, ordinances, regulations, and policies.

<u>SECTION 5</u>. That all ordinances or parts of ordinances in conflict with the provisions of this ordinance are hereby repealed.

Passed:		Mayor
Published: Attest:		
	Village Clerk	

1\mw\ord.25\SU-1250-1254-Ogden-25-PZC-0008

ORD 2025-10692 Page 6 of 167

VILLAGE OF DOWNERS GROVE REPORT FOR THE PLANNING AND ZONING COMMISSION FEBRUARY 3, 2025 AGENDA

SUBJECT:	TYPE:	SUBMITTED BY:
24-PZC-0008 1250-1254 Ogden Avenue	Special Use for a drive-through	Jason Zawila, AICP Planning Manager

REQUEST

The petitioner is requesting approval of a Special Use for a drive-through at 1250 Ogden Avenue.

NOTICE

The application has been filed in conformance with applicable procedural and public notice requirements.

GENERAL INFORMATION

OWNER: 1254 Ogden Avenue, LLC

1254 Ogden Avenue

Downers Grove, IL 60515

PETITIONER: Vick Mehta

718 Ogden Avenue

Downers Grove, IL 60515

PROPERTY INFORMATION

EXISTING ZONING: B-3, General Services and Highway Business

EXISTING LAND USE: Commercial Building (Vacant) **PROPERTY SIZE:** 41,505 square feet (0.95 acres)

PINS: 09-06-403-005

SURROUNDING ZONING AND LAND USES

	ZONING	FUTURE LAND USE
NORTH:	B-3, General Services and Highway Business	Multi-Family
SOUTH:	B-3, General Services and Highway Business	Corridor Commercial
EAST:	B-3, General Services and Highway Business	Corridor Commercial
WEST:	B-3, General Services and Highway Business	Corridor Commercial

ANALYSIS

SUBMITTAL S

This report is based on the following documents, which are on file with the Department of Community Development:

Page 2

- 1. Application/Petition for Public Hearing
- 2. Project Summary
- 3. ALTA/ACSM Land Title Survey
- 4. Architectural Plans
- 5. Engineering Plans
- 6. Landscape Plans
- 7. Traffic Impact Study

PROJECT DESCRIPTION

The petitioner is seeking a special use to construct a drive-through facility for a multi-tenant commercial building at 1250-1254 Ogden Avenue. The property is located west of the intersection of Saratoga and Ogden Avenue and is zoned B3, General Services and Highway Business. The proposed drive-through is listed as a permitted Special use pursuant to Section 28.5.010 of the Zoning Ordinance.

The subject property consists of one lot that contains an existing vacant building, parking lot and related improvements. The petitioner is proposing to demolish the existing building and all parking to construct a new 9,606 square foot multi-tenant retail building. The building facades will be composed of grey brick, glass, and metal canopies, with a varied roofline. The design is complimentary of other recent redevelopment projects along Ogden Avenue. The new commercial building includes four tenant spaces. The westernmost tenant space includes the drive-through and a building bump out to the west to serve as a pick-up window. The drive-through lane is designed to accommodate thirteen vehicles, which exceeds the minimum of eight vehicles as required by the Zoning Ordinance.

The petitioner is proposing landscaping around the perimeter of the site, in conformance with the Zoning Ordinance. Landscaping is provided along the north, west, east and southern property lines. Immediately northeast of the building, a new screened trash enclosure area is proposed. As required by the Zoning Ordinance, a pedestrian connection will be provided to Ogden Avenue. The existing two curb cuts onto Ogden Avenue will be maintained for the proposed development. Lastly, as a condition of approval, cross access will be provided to the properties immediately west and east of the subject property.

COMPLIANCE WITH THE COMPREHENSIVE PLAN

The subject property is designated as Corridor Commercial in the Comprehensive Plan and specifically the site is designated as part of the Ogden Avenue Key Focus Area.

The Ogden Avenue Focus Area key concepts include:

- A blend of neighborhood-oriented commercial retail, offices, smaller regional retail and service uses.
- Special attention to pedestrian circulation, cross-access between lots and overall enhanced appearance.
- Installation of perimeter and interior landscaping in all parking lots within the subarea.

The proposed development:

- Improves pedestrian connectivity by installing a new sidewalk along Ogden Avenue.
- Provides enhanced landscaping and screening in order to provide a buffer to the residential uses to the north and continues to build on a more attractive image along Ogden Avenue.
- Development would allow for a potential cross-access agreement with the property immediately to the east and west.

The proposed development meets the goals of the Comprehensive Plan.

Page 3

COMPLIANCE WITH THE ZONING ORDINANCE

The property is zoned B-3, General Services and Highway Business District. The proposed multi-tenant retail building with a drive-through use is listed as an allowable Special Use in this district. The bulk requirements of the proposed building in the B-3 zoning district are summarized in the following table:

Proposed Commercial Building	Required	Proposed
Street Setback (South – Ogden)	75' from CL of Ogden	119'
Side Setback (West)	N/A	39.3'
Side Setback (East)	N/A	31.9'
Rear Setback (North)	N/A	65.1
FAR	0.75	0.23
Proposed Parking	Required	Proposed
Street Setback (South – Ogden)	50 ft. from CL of Ogden	53.5'
Side Setback (West)	N/A	29.7'
Side Setback (East)	N/A	23.9'
Rear Setback (North)	N/A	8.6'
Total Parking Required	31	31
Total ADA Required	2 (on-site)	2 (on-site)
Proposed Drive-through	Required	Proposed
Street Setback (South – Ogden)	50' from CL of Ogden	119.5'
Side Setback (West)	N/A	24'
Side Setback (East)	N/A	15'
Rear Setback (North)	N/A	34.6'
Stacking Spaces	8	13
Drive-Through Lane Width	10'	12'

Site Plan Elements	Required	Proposed
Pedestrian Connections (x1)	Yes	Provided
Trash Enclosure	Yes	Yes
Bike Parking	2	2
Open Space	10% of lot area	18.5%

Signage

New wall signs are proposed on the southern facade, in addition to a monument sign. Directional signage to assist with directing vehicles to the drive-through is also proposed. All exterior signage will be required to meet the Sign Ordinance requirements.

ENGINEERING/PUBLIC IMPROVEMENTS

The project will meet all provisions of the Stormwater and Floodplain Ordinance. he existing sidewalk on Ogden Avenue will be replaced in certain portions to address ADA accessibility. The development proposes to connect water and sanitary service to existing mains located in the Ogden Avenue right-of-way.

TRAFFIC AND PARKING

A traffic impact study for the proposed development was prepared by the petitioner. Ingress and egress to the site will be provided via two access points. The drive-through provides queueing for thirteen vehicles. The study notes that the subject property is served by two existing full movement accesses onto Ogden

Page 4

Avenue which will remain in place. Per the site plan, cross access to both neighboring properties will be provided.

The study found that the traffic generated by the development can be accommodated by the existing area roadway system. The thirteen-vehicle drive-through stacking lane is adequate to accommodate drive-through peak demand without blocking the parking lot drive aisles. As noted in the above table, 31 parking spaces meets the number of spaces required by the Zoning Ordinance.

PUBLIC SAFETY REQUIREMENTS

The Fire Prevention Division has reviewed the proposed plans and determined that the development provides sufficient access for emergency vehicles. As shown in the truck-turning plan, the Village's largest emergency vehicle can maneuver through the site and access the new building. The building will also include a fire alarm system and sprinkler system that meet the Village's code requirements.

NEIGHBORHOOD COMMENT

Notice was provided to all property owners 250 feet or less from the property in addition to posting public hearing notice signs and publishing the legal notice in the *Daily Herald*. Staff received two inquiries regarding the proposed development, which were general in nature.

STANDARDS OF APPROVAL

The petitioner is requesting a Special Use approval to construct a new drive-through. The review and approval criteria is listed below.

The petitioner has submitted a narrative that attempts to address all the standards of approval. The Planning and Zoning Commission should consider the petitioner's documentation, the staff report, and the discussion at the Planning and Zoning Commission meeting in determining whether the standards for approval have been met.

Section 28.12.050.H Standards for Approval of Special Uses

No special use may be recommended for approval or approved unless the respective review or decision-making body determines that the proposed special use is constituent with and in substantial compliance with all Village Council policies and plans and that the petitioner has presented evidence to support each of the following conclusions:

- (1) that the proposed use is expressly authorized as a special use in the district in which it is to be located:
- (2) that the proposed use will not, in the particular case, be detrimental to the health, safety, or general welfare of the community;.
- (3) that the proposed use will not be injurious to the use and enjoyment of other property in the immediate area for the purposes already permitted, nor substantially diminish or impair property values within the neighborhood;
- (4) that the establishment of the special use will not impede the normal and orderly development and improvement of adjacent property for uses permitted in the district.

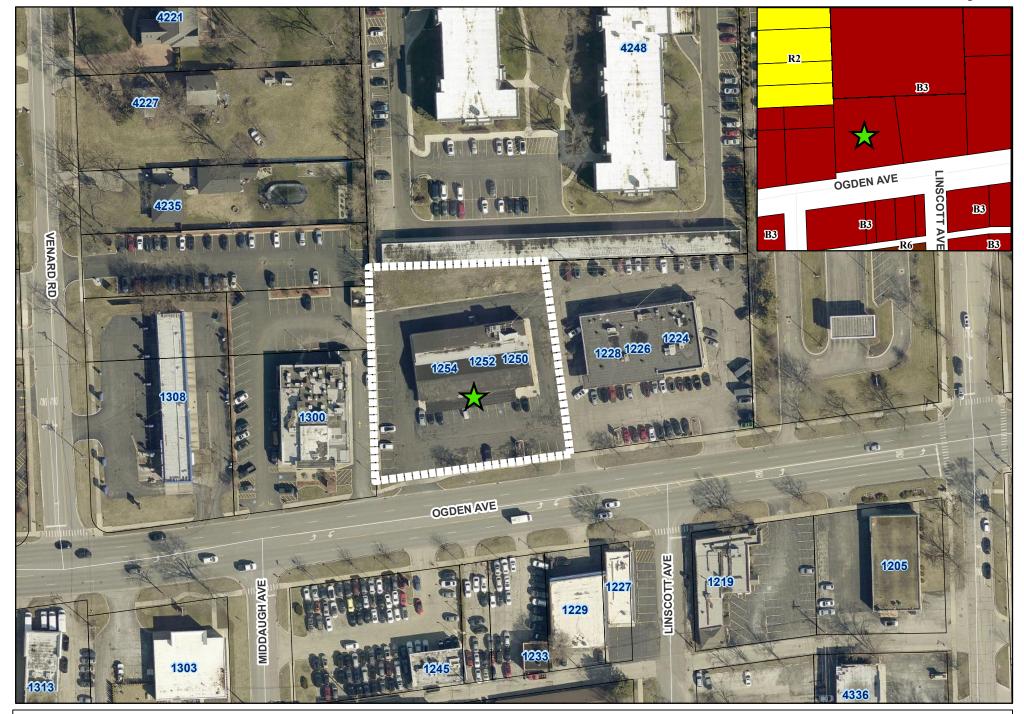
DRAFT MOTION

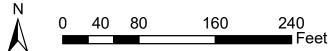
Staff will provide a recommendation at the February 3, 2025 meeting. Should the Planning and Zoning Commission find that the request meets the standards of approval for a Special Use, staff has prepared a

Page 5

draft motion that the Planning and Zoning Commission may make for the recommended approval of 24-PZC-0008:

Based on the petitioner's submittal, the staff report, and the testimony presented, I find that the petitioner has met the standards of approval for a Special Use as required by the Village of Downers Grove Zoning Ordinance and is in the public interest and therefore, I move that the Planning and Zoning Commission recommend to the Village Council approval of 24-PZC-0008, subject to the following conditions:


- 1. The proposed Special Use for a drive-through use shall substantially conform to the attached proposed New Multi-Tenant Building Plans for 1250-1254 Ogden Avenue drawings prepared by Bono Consulting Civil Engineering dated December 26, 2024, last revised January 21, 2025, architectural drawings prepared by CJ Architects dated December 27, 2024, last revised January 21, 2025, except as such plans may be modified to conform to Village codes, ordinances, and policies.
- 2. Provision of cross access for the immediately adjacent properties to the west and east of the subject property.
- 3. That the brick building materials constructed at the base of the building will be carried through to the roofline in columns, pending initial tenant sign placement.


Staff Report Approved By:

Audric

Stanley J. Popovich, AICP

Director of Community Development

ORD 2025-10692

cj architects 773.383.6556 cj-architects.com

To: Village of Downers Grove, IL

Community Development Dept. - Planning Division

850 Curtiss St. - Downers Grove, IL 60515 ATTN: Mr. Jason Zawila, Planning Manager

RE: 1250-54 Ogden Ave.

Site Plan and Special Use review petition

DATE: 14 January 2025

Mr. Zawila-

On behalf of the prospective Owner of the subject property, Mr. Vick Mehta, I am respectively submitting this narrative to Staff, to supplement and guide the petition for a Planning and Zoning Commission hearing.

The property in question is commonly known as 1250-54 Ogden Ave and is currently improved with a roughly 7,855 s.f. 1-story building, which currently serves as an Immediate Care Medical Facility. The entire parcel is mostly paved with a dilapidated asphalt surface lot comprising approximately 43 parking spaces. Minimal open space is provided in a grassy, non-landscaped area along the rear property line. Most exterior utilities and refuse containers are exposed. The building itself is outdated, and most components have reached the end of their serviceable life.

The proposal is to demolish the existing building and completely redevelop the site to bring a fresh infill into this part of the Ogden Avenue corridor. The plan is to build a new 1-story, 9,606 s.f. mixed use retail/commercial building. The front of the building will mostly front on and face Ogden Ave to the south and will thus contain 5 storefronts for a varied mix of potential tenants. The west side of the building will provide for a drive-thru window, with the intended tenant to be a fast-casual, quick-service restaurant with some outdoor seating. The east end tenant is also targeted at a similarly scaled restaurant space, less the drive-thru access, but also with some outdoor seating. The 3 interior spaces will be marketed to retail/office tenants.

For parking, 31 automobile parking spaces will be provided in the front and rear grade-level lot, with 2 spaces reserved for Accessible parking, as required. For the drive-thru, 4 car lengths are available from the pick-up window to the order box, with another 8 spaces of queueing space around the rear of the building for 8 vehicles, and one space in front of the pick-up for waiting and egress. Two bicycle spaces will be provided at the east end of the walkway in front of the building, which is accessible off of the right-of-way by a walkway of contrasting material across the lot, which also provides the main pedestrian access. A dedicated landlord room will be provided to contain house utility services and access to the roof hatch with a ladder. Tenant utilities will be lined along the rear wall.

ORD 2025-10692 Page 13 of 167

cj architects 773.383.6556 cj-architects.com

Vehicular Access to the site will be provided by two existing curb cuts, both off of Ogden Ave, and one on each end of the site, to allow flow through of the parking and circulation. Part of the east curb cut is shared with he neighboring property and will be maintained, with some new/continued agreement for improvement, maintenance, and access/easement. Additionally, an existing cross-access agreement with the neighbor to the west will be maintained via curb cut in the NW corner of the new lot, to align with adjoining lot. Vehicles will access the site from either curb entrance, with the option to park at the front, or access the drive-thru or rear parking through split lanes at the east side of the building and around the rear in a counterclockwise pattern. Both lanes will terminate on the west side of the building where they will merge to allow the incoming traffic from the west curb cut, but also provide egress for these lanes, or recirculation back into the parking lot. Refuse containment is provided in the rear NE corner of the property, with truck access in from the east curb cut, to the enclosure, and following the common vehicular circulation around the building.

The proposed exterior facades seek to provide a sleek, modern backdrop for tenant signage, by way of adornment with a mixture of masonry elements and banding, synthetic stucco, large storefronts, and a sophisticated color palette. Storefronts and drive-thru window will be highlighted with metal canopies and fabric awnings above, and decorative lighting in between, with a lighted cornice at decorative parapets. The building will have a low-slope roof with interior drainage. Additionally, the site will be improved with a 5-slot monument sign and a 6ft white PVC refuse container storage enclosure. Future embellishment of outdoor dining areas will be included in tenant improvement plans as they are established.

This application seeks to obtain a Special Use for the drive-thru, with the remaining applicable ordinance requirements provided by right, as no other Variations or Special Uses are being requested. I hope this narrative adequately describes our project proposal and assists staff in review of the details. Should you have any further questions, comments, or concerns, please do not hesitate to contact me directly.

Respectfully Submitted-

Christopher A Jackson, Architect - NCARB, LEED AP President and Principal - CJ Architects, Inc.

ORD 2025-10692 Page 14 of 167

Special Uses

Review and Approval Criteria

Address of Project Site: ______

A detailed response to all of the standards shall be provided, specifying how each standard is or is not met.
Section 28.12.050.H. Approval Criteria (Special Uses) No special use may be recommended for approval or approved unless the respective review or decision—making body determines that the proposed special use is consistent with and in substantial compliance with all Village Council policies and plans, including, but not limited to, the Comprehensive Plan and the Downtown Design Guidelines and that the applicant has presented evidence to support each of the following conclusions:
 That the proposed use is expressly authorized as a Special Use in the district in which it is to be located.
2. That the proposed use will not, in the particular case, be detrimental to the health, safety, or genera welfare of the community.
3. That the proposed use will not be injurious to the use and enjoyment of other property in the immediate area for the purposes already permitted, nor substantially diminish or impair property values within the neighborhood.
4. That the establishment of the special use will not impede the normal and orderly development and improvement of adjacent property for uses permitted in the district.

NOT TO SCALE UTILITY ATLAS NOTES:

J.U.L.I.E. DESIGN STAGE REQUEST

DIG NUMBER X242700601 RECEIVED 09-26-2024. CONTACTS PROVIDED BY J.U.L.I.E. & LISTED BELOW WERE

CONTACTED BY V3 VIA FAX, REQUESTING UTILITY ATLAS **INFORMATION** CONTACTS RESPONSE

AT&T/DISTRIBUTION **RESPONDED WITH ATLAS** COM-ED RESPONDED, WITH ATLAS COMCAST **NO RESPONSE** CROWN CASTLE **RESPONDED WITH ATLAS**

DOWNERS GROVE, VILLAGE OF RESPONDED WITH ATLAS MCI/VERIZON RESPONDED WITH ATLAS **RESPONDED WITH ATLAS** NICOR GAS NO RESPONSE USIC LOCATING SVCS

LEGEND

GAS VALVE

GAS METER

FLAGPOLE

W/ NUMBER

GAS VALVE VAULT

POST INDICATOR VALVE

STORM INLET

HOSE BIB

HYDRANT WATER VALVE

B-BOX

 \oplus FBD

STORM MANHOLE

FLARED END SECTION

SANITARY MANHOLE

WATER VALVE VAULT

PAINTED WATER LINE

IRRIGATION CONTROL VALVE

FOUND DISK IN CONCRETE

IRRIGATION HEAD

FOUND BRASS DISC

FOUND ROW MARKER

SET TRAVERSE POIN

FOUND IRON ROD

O FPK FOUND PK NAIL

O FMG FOUND MAG NAII

O FIB FOUND IRON BAR

SIP SET IRON PIPE

ABBREVIATIONS

EXISTING SPOT ELEVATION

F.F. FINISHED FLOOR

T.F. TOP OF FOUNDATION

VCP VITRIFIED CLAY PIPE

EP EDGE OF PAVEMENT

BRK. BRICK

GUT GUTTER

F.L. FLOW LINE

CONC. CONCRETE

BIT. BITUMINOUS

CW CONCRETE WALF

FES FLARED END SECTION

DIP DUCTILE IRON PIPE

STORM DRAIN SAN SANITARY SEWER N NORTH S SOUTH

CB CHORD BEARING

D.E. DRAINAGE EASEMENT

M.U.E. MUNICIPAL UTILITY EASEMENT

PC POINT OF CURVATURE PCC POINT OF COMPOUND CURVATURI

I.E. INGRESS & EGRESS EASEMENT

PRC POINT OF REVERSE CURVATURE

CALCULATED DATUM

A ARC LENGTH R RADIUS U.E. UTILITY EASEMENT P.U.E. PUBLIC UTILITY EASEMENT

TW TOP OF WALL

TP TOP OF PIPE

INV INVERT

W WEST

TC TOP OF CURB

RCP REINFORCED CONCRETE PIPE

EXISTING TOP OF CURB ELEVATION

EXISTING EDGE OF PAVEMENT ELEVATION

+ FCC FOUND CUT CROSS O FIP FOUND IRON PIPE

CABLE TV PEDESTAL TRAFFIC LIGHT POLE TRAFFIC CONTROL BOX TRAFFIC CONTROL VAULT TRAFFIC LIGHT PAINTED TELEPHONE LINE FIBER OPTIC CABLE LINE UTILITY POLE POWER POLE LIGHT STANDARD ELECTRIC MANHOLE ELECTRIC TRANSFORMER PAD FLECTRIC METER

PUBLIC PAY TELEPHONE PARKING METER BASKETBALL HOOP AIR CONDITIONER PAD/UNIT HANDHOLE DECIDUOUS TREE **ELECTRICAL JUNCTION BOX** W/ TRUNK SIZE NON-DECIDUOUS TREE ELECTRIC SERVICE OUTLET BOX PAINTED ELECTRIC LINE TRANSFORMER PAD SOIL BORING HOLE

SECTION CORNER QUARTER SECTION CORNER

● SBM SET CONCRETE MONUMENT WITH BRASS DISC ● SCM SET CONCRETE MONUMENT WITH IRON PIPE DSP DOWN SPOUT

PROPERTY LINE **EXISTING RIGHT-OF-WAY LINE** PROPOSED LOT LINE EX. & PRO. CENTERLINE EXISTING EASEMENT LINE EX. & PRO. BUILDING SETBACK LINE

EXISTING FENCELINE (CHAIN LINK) EXISTING FENCELINE (WOOD) EXISTING FENCELINE (WIRE) UNDERGROUND CABLE TV

UNDERGROUND CABLE TV(ATLAS INFO. UNDERGROUND FIBER OPTIC CABLE(ATLAS UNDERGROUND TELEPHONE WATER MAIN (ATLAS INFO.)

OVERHEAD WIRES EXISTING CONTOUR LINE ASPHALT PAVING OR WATER (LABELED)

UNPAVED ROAD CONCRETE EXISTING BUILDING

INFORMATION TAKEN FROM DEED EXCEPTION TO BLANKET EASEMENT GENERAL NOTES

COMPARE THIS PLAT, LEGAL DESCRIPTION AND ALL SURVEY POINTS AND MONUMENTS BEFORE ANY CONSTRUCTION, AND IMMEDIATELY REPORT ANY DISCREPANCIES TO SURVEYOR.

2. DO NOT SCALE DIMENSIONS FROM THIS PLAT

3. THE LOCATION OF THE PROPERTY LINES SHOWN ON THE FACE OF THIS PLAT ARE BASED UPON THE DESCRIPTION AND INFORMATION FURNISHED BY THE CLIENT, TOGETHER WITH THE TITLE COMMITMENT. THE PARCEL WHICH IS DEFINED MAY NOT REFLECT ACTUAL OWNERSHIP, BUT REFLECTS WHAT WAS SURVEYED. FOR OWNERSHIP, CONSULT YOUR TITLE COMPANY.

MANHOLES, INLETS AND OTHER UTILITY RIMS OR GRATES SHOWN HEREON ARE FROM FIELD LOCATION OF SUCH, AND ONLY REPRESENT SUCH UTILITY IMPROVEMENTS WHICH ARE VISIBLE FROM ABOVE GROUND AT TIME OF SURVEY, THROUGH A NORMAL SEARCH AND WALK THROUGH OF THE SITE. THE LABELING OF THESE MANHOLES (SANITARY, WATER, ETC.) IS BASED SOLELY ON THE "STAMPED" MARKINGS OF THE RIM. NO UNDERGROUND OBSERVATIONS HAVE BEEN MADE TO VERIFY THE ACTUAL USE OR EXISTENCE OF UNDERGROUND UTILITIES. UNDERGROUND UTILITY LINES SHOWN HEREON. IF ANY, ARE BASED ON FIELD LOCATED STRUCTURES IN COORDINATION WITH ATLAS INFORMATION PROVIDED BY UTILITY COMPANIES THROUGH J.U.L.I.E.'S DESIGN STAGE

PROCESS. SEE "UTILITY ATLAS NOTES" HEREON FOR SPECIFICS. NO DRAIN TILES, IF ANY EXIST, SHOWN HEREON.

THIS SURVEY MAY NOT REFLECT ALL UTILITIES OR IMPROVEMENTS IF SUCH ITEMS ARE HIDDEN BY LANDSCAPING OR ARE COVERED BY SUCH ITEMS AS DUMPSTERS, TRAILERS, CARS, DIRT, PAVING OR SNOW. AT THE TIME OF THIS SURVEY, SNOW DID NOT COVER THE SITE. LAWN SPRINKLER SYSTEMS, IF ANY, ARE NOT SHOWN ON THIS SURVEY.

OTHER THAN VISIBLE OBSERVATIONS NOTED HEREON, THIS SURVEY MAKES NO STATEMENT REGARDING THE ACTUAL PRESENCE OR ABSENCE OF ANY SERVICE.

CALL J.U.L.I.E. AT 1-800-892-0123 FOR FIELD LOCATION OF UNDERGROUND UTILITIES PRIOR TO ANY DIGGING OR CONSTRUCTION.

PUBLIC AND/OR PRIVATE RECORDS HAVE NOT BEEN SEARCHED TO PROVIDE ADDITIONAL INFORMATION. OVERHEAD WIRES AND POLES (IF ANY EXIST) ARE SHOWN HEREON, HOWEVER THEIR FUNCTION AND DIMENSIONS HAVE NOT BEEN SHOWN.

10. RESTRICTIONS THAT MAY BE FOUND IN LOCAL BUILDING AND/OR ZONING CODES HAVE NOT BEEN SHOWN. HEIGHTS AND BUILDING RESTRICTIONS (IF ANY) HAVE NOT BEEN SHOWN. ONLY THOSE SETBACK RESTRICTIONS SHOWN ON THE RECORDED SUBDIVISION PLAT OR IN THE TITLE COMMITMENT HAS BEEN SHOWN. THIS PROPERTY IS SUBJECT TO SETBACKS AS ESTABLISHED PURSUANT TO VILLAGE OF DOWNERS GROVE ZONING ORDINANCES AS AMENDED. IN REFERENCE TO TABLE A ITEM 6, THERE MAY BE A NEED FOR AN INTERPRETATION OF A RESTRICTION, THE SURVEYOR CANNOT MAKE A CERTIFICATION ON THE BASIS OF AN INTERPRETATION.

11. THIS PROPERTY IS ZONED B-3 PER VILLAGE OF DOWNERS GROVE ZONING MAP DATED JANUARY 1, 2024. SEE

VILLAGE OF DOWNERS GROVE ZONING ORDINANCE FOR SPECIFICS. 12. THERE IS NO OBSERVABLE EVIDENCE OF CEMETERIES ON THE PROPERTY.

13. THERE IS NO OBSERVABLE EVIDENCE OF CURRENT EARTH MOVING WORK, BUILDING CONSTRUCTION OR BUILDING

14. THE SURVEYOR IS NOT AWARE OF ANY NEW OR PROPOSED RIGHT OF WAY CHANGES. UNLESS SHOWN OR NOTED HEREON, THERE WAS NO EVIDENCE OF RECENT STREET OR SIDEWALK CONSTRUCTION OR REPAIRS OBSERVED IN

15. WETLANDS WERE NOT OBSERVED IN THE PROCESS OF CONDUCTING THE FIELDWORK.

16. A CURRENT CHICAGO TITLE INSURANCE COMPANY TITLE COMMITMENT FILE NO. 24NW7153070WH DATED SEPTEMBER 9, 2024 WAS PROVIDED FOR SURVEYOR'S USE AT THE TIME OF PREPARATION OF THIS SURVEY. SEE "NOTES FROM SCHEDULE B PART II" SHOWN HEREON FOR DETAILS.

ALTA/NSPS LAND TITLE & TOPOGRAPHIC SURVEY

1250-1254 OGDEN AVENUE

DOWNERS GROVE, IL

LEGAL DESCRIPTION THAT PART OF LOT 1 IN AMERICAN LEGION POST 80 SUBDIVISION PLAT OF PART OF KALBRIER AND CASSIDY'S SURVEY OF PART OF THE EAST HALF OF SECTION 6, TOWNSHIP 38 NORTH, RANGE 11 EAST OF THE THIRD PRINCIPAL MERIDIAN, ACCORDING TO THE PLAT THEREOF RECORDED JANUARY 12, 1959, AS DOCUMENT 908714, LYING WESTERLY OF A LINE JOINING A POINT IN THE NORTH LINE OF SAID LOT, 183.92 FEET EAST OF THE NORTHWEST CORNER THEREOF AND A POINT IN THE SOUTHERLY LINE OF SAID LOT 205.69 FEET EASTERLY OF THE SOUTHWEST CORNER THEREOF, IN DUPAGE COUNTY, ILLINOIS.

> **EXCEPTIONS** EASEMENT FOR PUBLIC UTILITIES; DOC. 908714

a. its location is shown;

NOTES FROM SCHEDULE B, PART II

RELATED

NOTE

ALL OTHER SCHEDULE B ITEMS ARE NON-PLOTTABLE OR NOT A SURVEY MATTER **RELATED NOTES**

BASIS OF BEARINGS

THE BASIS OF BEARINGS IS THE STATE PLANE COORDINATE SYSTEM (SPCS) NAD 83 (2011) ZONE 1201 (ILLINOIS EAST) WITH PROJECT ORIGIN AT LATITUDE: 41° 48' 30.82379" N LONGITUDE: 88° 01' 01.31273" W ELLIPSOIDAL HEIGHT: 632.224 SFT GROUND SCALE FACTOR: 1.0000467276 ALL MEASUREMENTS ARE ON THE GROUND.

GRAPHIC SCALE

Page 15 of 167

PARKING STALLS

STANDARD PARKING STALLS= 40 ACCESSIBLE PARKING STALLS=01 **TOTAL PARKING STALLS=41**

FLOOD HAZARD NOTE

THIS PROPERTY IS IN AN AREA OF MINIMAL FLOOD HAZARD (ZONE X) AS DEFINED BY THE FEDERAL EMERGENCY MANAGEMENT AGENCY'S FLOOD INSURANCE RATE MAP OF DOWNERS GROVE, DUPAGE COUNTY, ILLINOIS (COMMUNITY PANEL NO. 17043C0167J) EFFECTIVE DATE 08/01/2019.

AREA 41,505 S.F.

ADJ. BUILDING

× 1^{A2}STORM MH

IE 6" VCP NE=739.09

IE 8" CMP N=738.44 IE 10" CMP S=738.39 SBM SQ LSD BASE

STORM INLET

IE 12" RCP S=738.45

RIM=741.35 IE 8" VCP N=738.85

35

35

0.95283 AC.

CONC. WALL W/ #1751 STORM INLET WOODEN FENCE STORM INLET ADJ. BUILDING RIM=743 88 -FIP 1 BENT RIM=743.77 IE 6" PVC W=742.66 10' UTILITY EASEMENT IE 6" PVC W=742.68 PER DOC. R1959-908714 CORNER_× 2.38'N ENCLOSURE 145(1246.0) WALL vvALL 0.63'E ₇₄ FENCE -. 0.1'W CONC. 745.41 42.81' 143.29 143.4 1 STORY BRICK AND GLASS BUILDING 7855 SQ. FT. SANITARY MH RIM=743.35 IE 4" UNK E=739.27 IE 4" UNK W=739.40 STANDARD PARKING STORM INLET RIM=741.53 E 8" CMP SE=739.73 102 7 STANDARD PARKING IE 15" CMP E,W=738.34 BIT. PAVEMENT

WESTBROOK WEST CONDO

ZONING REGULATIONS

Regulations Minimum District Area (acres) 2 4 Minimum Lot Area (square feet) Minimum Lot Area Per Dwelling Unit (square feet) Maximum Floor Area Ratio (FAR) 0.40 0.75 0.75 Maximum Building Coverage (% of lot) Building Setbacks (feet) Street (see also Sec. 3.040) 25 25 25 Side (interior) -[4] Rear (residential floors) Rear (nonresidential floors) -[5] -[5] -[5] Min. Landscaped Open Space (% of lot)[10] 10 10 10

BENCHMARK

DATE:

SBM SE BOLT LSD

SOURCE: STATION DESIGNATION: DK3214 ESTABLISHED BY: DUPAGE COUNTY

MARCH 2006

ELEVATION: 770.91 (MEASURED & HELD)

10' UTILITY EASEMENT PER DOC. R1959-908714

DATUM: NAVD88 DESCRIPTION: 3.5" BRASS GEODETIC MARKER DISC LOCATED ON SOUTH END OF EAST BRIDGE WALL BEING 110' NORTH OF CENTERLINE OF CAR DEALERSHIP ENTRANCE & 32' EAST OF CENTERLINE OF FINLEY ROAD NORTHBOUND.

SITE:

STATION DESIGNATION: SBM 1 ESTABLISHED BY: V3 COMPANIES DATE:09/30/2024

ELEVATION: 743.17 (MEASURED) NAVD88

DESCRIPTION: SCRIBED SQUARE STAND OF LIGHT STANDARD, LOCATED NORTH OF SIDEWALK AND EAST OF EASTERLY ENTRANCE TO SUBJECT PROPERTY.

STATION DESIGNATION: SBM 2 **ESTABLISHED BY: V3 COMPANIES** DATE:09/30/2024

ELEVATION: 745.87 (MEASURED) DATUM: NAVD88

DESCRIPTION: SOUTHEAST BOLT ON LIGHT STANDARD LOCATED IN CONC. PARKING LOT DIVIDER BEING EASTERLY OF SOUTHEAST CORNER OF BUILDING ADJACENT TO THE WEST.

THE ELEVATIONS ABOVE WERE KNOWN TO BE ACCURATE AT THE TIME THEY WERE ESTABLISHED. V3 DOES NOT CERTIFY TO THE ACCURACY THEREAFTER, NOR ASSUMES RESPONSIBILITY FOR THE MIS-USE OR MIS-INTERPRETATION OF THE INFORMATION SHOWN HEREON.

IT IS ADVISED THAT ALL OF THE ABOVE ELEVATIONS BE CHECKED BETWEEN EACH OTHER AND VERIFY A MINIMUM OF 3 SURROUNDING UTILITY RIM ELEVATIONS AND ANY ADJACENT BUILDING FINISHED FLOOR OR TOP OF FOUNDATION ELEVATIONS SHOWN HEREON PRIOR TO USE OR COMMENCEMENT OF ANY CONSTRUCTION OR OTHER WORK.

PERSONS USING THIS INFORMATION ARE TO CONTACT V3 IMMEDIATELY WITH ANY DISCREPANCIES FOUND PRIOR TO THE START OF ANY WORK.

SURVEYOR CERTIFICATE

STATE OF ILLINOIS

Maximum Building Height (feet)

COUNTY OF DUPAGE

TO: INDVESTIA CAPITAL LLC 1254 OGDEN AVE LLC, AN ILLINOIS LIMITED LIABILITY COMPANY CHICAGO TITLE INSURANCE COMPANY

THIS IS TO CERTIFY THAT THIS MAP OR PLAT AND THE SURVEY ON WHICH IT IS BASED WERE MADE IN ACCORDANCE WITH THE 2021 MINIMUM STANDARD DETAIL REQUIREMENTS FOR ALTA/NSPS LAND TITLE SURVEYS, JOINTLY ESTABLISHED AND ADOPTED BY ALTA AND NSPS, AND INCLUDES ITEMS 1, 2, 3, 4, 6,(a), 7(b), 8, 9, 11(a), 16, AND 20 OF TABLE A THEREOF.

THIS PROFESSIONAL SERVICE CONFORMS TO THE CURRENT ILLINOIS MINIMUM STANDARDS FOR BOUNDARY AND TOPOGRAPHIC SURVEYS.

THE FIELD WORK WAS COMPLETED ON SEPTEMBER 30, 2023.

DATED THIS 14TH DAY OF OCTOBER, A.D., 2024.

EDWARD J. MURRAY ILLINOIS PROFESSIONAL LAND SUF VEYOR NO. 35-4037 MY LICENSE EXPIRES ON NOVEMBER 30, 2024. THIS DESIGN FIRM NUMBER EXPIRES APRIL 30, 2025.

V3 COMPANIES OF ILLINOIS, LTD. PROFESSIONAL DESIGN FIRM NO. 184000902

emurray@v3co.com

Engineers Scientists Surveyors

THE PROCESS OF CONDUCTING THE FIELDWORK.

7325 Janes Avenue, Suite 100 Woodridge, IL 60517 630.724.9200 voice 630.724.0384 fax v3co.com

PREPARED FOR: INDVESTIA CAPITAL 2777 FINLEY RD DOWNERS GROVE, IL 60515 630.850.0500

REVISIONS DATE 10/22/24

DESCRIPTION TIES TO ADJACENT BUILDING

ALTA/NSPS LAND TITLE & TOPOGRAPHIC SURVEY 1250-1254 OGDEN AVENUE - DOWNERS GROVE, IL DRAFTING COMPLETED: 10/10/2024 DRAWN BY: PROJECT MANAGER: EJM ADS FIELD WORK COMPLETED: 09/30/2024 CHECKED BY: EJM SCALE: 1" = 20'

Group No: VP03.1 SHEET NO.

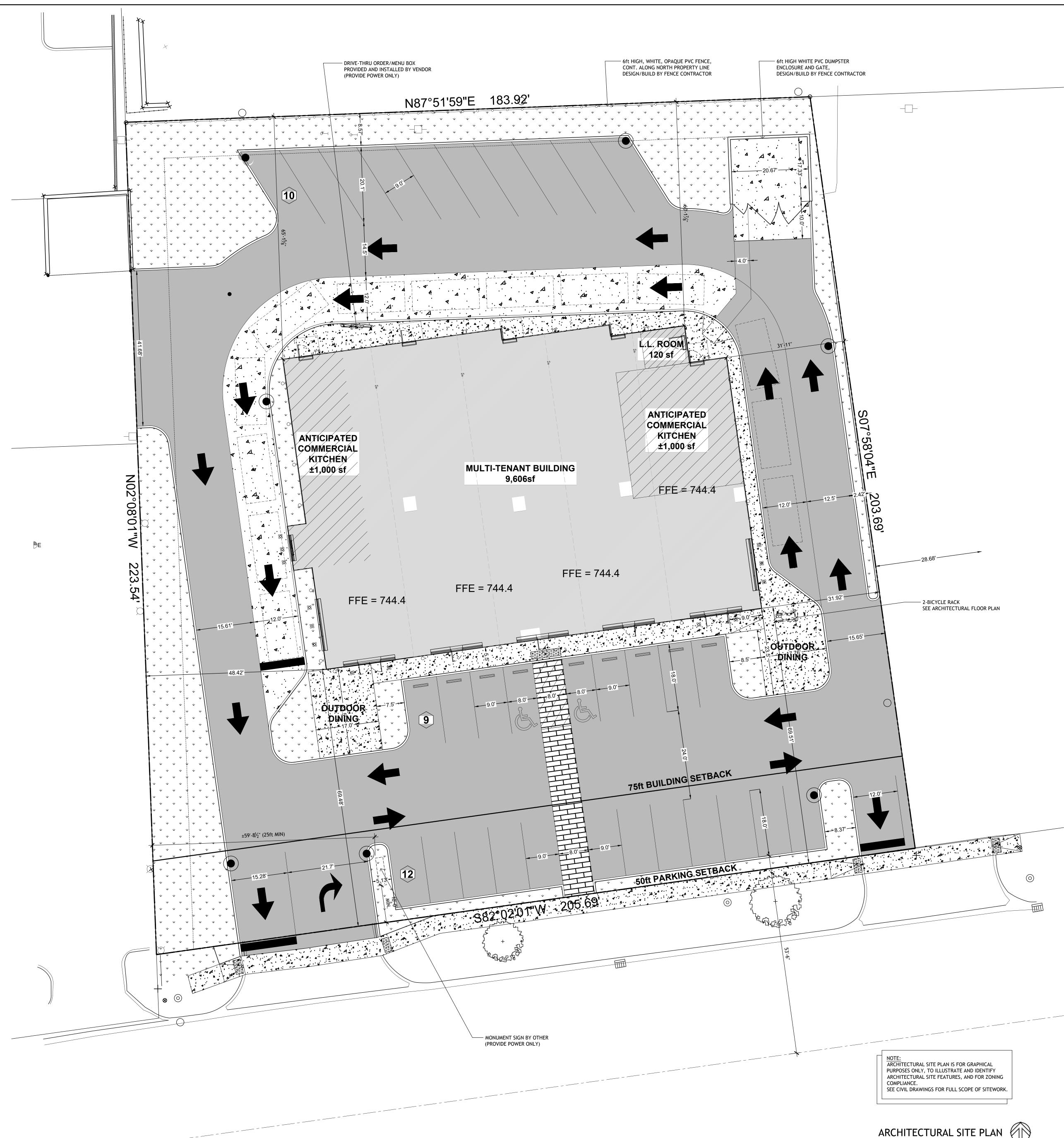
Project No: 241167

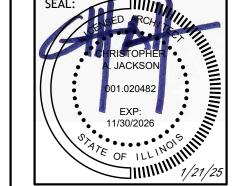
		ZONING	ANALYSIS		
Project Name:		l Development			
Address:	1250-1254	Ogden Ave.			
PIN(s):	09-06-403-0				
Zoning District:	B3 - Genera	al Services and Highway Business D	istrict.		
Existing Use:	Retail/Com	mercial Building and Parking			
Proposed Use:	Retail/Com	mercial Building and Parking			
Petition Type:					
Deviations:		e - Drive through			
Requirement	Factor	Required	Proposed/Existing		eq.? Difference
District Area	Minimum	4 acres	N/A	N/A	N/A
Lot Area	Minimum	Not Required	41,505 sq. ft.	N/A	N/A
Building Coverage	Maximum	Not Restricted by ordinance	N/A	N/A	N/A
Ogden Ave. (€ row)	Minimum	75' buildings, 50' canopies/pkng	119', 53'	YES	
Rear Yard	Minimum	Not Required	N/A	YES	
Int. Side Yard		Not Required	N/A	N/A	N/A
Height	Maximum	60'	24ft	YES	
Open Space	Minimum	10% of lot (4,150.5 sq. ft.)	18.5% (7,678 sq. ft.)	YES	
FAR	Maximum	0.75 (31,128.75)	0.231 (9,606 sq. ft.)	YES	
Parking	Minimum	Mixed use = 4 per 1,000sf (30)	31	YES	
-	Minimum	BICYCLE: 2	2	YES	
			N/A	N/A	N/A

VILLAGE OF DOWNERS GROVE CODES:

■ Current Downers Grove Zoning Ordinance

 Current Downers Grove Stormwater and Flood Plain Ordinance 2021 International Building Code with D.G. amendments


2020 National Electric Code with D.G. amendments


 Current State of Illinois Plumbing Code with D.G. amendments
 2021 International Mechanical Code with D.G. amendments 2021 International Fuel Gas Code with D.G. amendments

2021 International Energy Conservation Code with D.G. amendments & State of Illinois amendments

2021 International Property Maintenance Code with D.G. amendments
 2021 International Fire Code with D.G. amendments

2015 Life Safety Code - NFPA 101Current State of Illinois Accessibility Code

SUBMITTAL HISTORY: REV: • DEC. 27, 2024 PZC SUBMITTAL 1 • JAN. 21, 2024 PZC SUBMITTAL 2

CONSULTANT:

NEW MULTI-TENANT BUILDING
LANDLORD WORK - SITE/SHELL
1250-1254 OGDEN AVE.
DOWNERS GROVE, IL 60561

SHEET NAME ARCHITECTURAL SITE PLAN

PZC SUBMITTAL ONLY

1.21.2025

29'-0" LANDLORD ROOM #1248 150 GSF #1258 2,084 LSF #1256 1,960 LSF <u>#1254</u> 1,925 LSF <u>#1252</u> 1,872 LSF #1250 1,630 LSF 24'-2" 23'-4" 118'-4" GRAPHIC SCALE: $\frac{3}{16}$ " = 1'-0"

0 2' 4' 8'

FLOOR PLAN

SCALE: $\frac{3}{16}$ " = 1'-0"

NORTH

SUBMITTAL HISTORY: REV: DEC. 27, 2024
 PZC SUBMITTAL 1
 JAN. 21, 2024
 PZC SUBMITTAL 2

Ćj

CONSULTANT:

NEW MULTI-TENANT BUILDING
LANDLORD WORK - SITE/SHELL
1250-1254 OGDEN AVE.
DOWNERS GROVE, IL 60561

SHEET NAME

FLOOR PLAN

PZC SUBMITTAL ONLY

PROPOSED ELEVATION - REAR (NORTH-FACING)

SCALE: 1/4" = 1'-0"

4 EXTERIOR MATERIAL AND FINISH SCHEDULE: MARK MATERIAL COLOR ADHERED BRICK VENEER ADHERED MASONRY VENEER ADHERED STONE WATERTABLE/SILL | CULTURED STONE | CAST-FIT SYNTHETIC STUCCO (E.I.F.S.) SYNTHETIC STUCCO (E.I.F.S.) DRYVIT BY TREMCO | SANDPEBBLE FINE | 618 ANTIQUE GRAY SYNTHETIC STUCCO (E.I.F.S.) SEE PLANS/ELEVS CLEAR ANODIZED ALUMINUM STOREFRONT SEE PLANS/ELEVS BLACK STEEL CANOPY SEE PLANS/ELEVS BLACK STEEL COPING CAP STEEL SERVICE DOOR SEE PLANS/ELEVS GRAY ALUMINUM DRIVE-THRU WINDOW READY ACCESS 275 W/ AIR CURTAIN CLEAR ANODIZED DRIVE-THRU HAND-OFF SHELF SEE PLANS/ELEVS STAINLESS STEEL CONDUCTOR HEAD & DOWNSPOUT (OPEN SPEC) SEE PLANS/ELEVS BLACK ALL SIGNAGE TO BE PROVIDED BY VENDOR AND PERMITTED SEPARATELY - SHOWN HERE ONLY FOR REFERENCE CONSULTANT: PROPOSED ELEVATION - EAST SIDE SCALE: 1/4" = 1'-0" TOP OF MAIN PARAPET

21'-1 1/2"

TOP OF REAR PARAPET

20'-9" TOP OF BRICK AT ACCENTS

15'-8"
TOP OF STANDARD BRICK

13'-8"
STOREFRONT, CANOPY, & CLNG. HT.

12'-0"
BOTT. OF DRIVE-THRU CANOPY

11'-0" PROPOSED ELEVATION - WEST SIDE

SCALE: 1/4" = 1'-0" SIGN SIGN SIGN SIGN SIGN PROPOSED ELEVATION - SOUTH (FACING OGDEN AVE.)

SCALE: 1/4" = 1'-0"

SUBMITTAL HISTORY: REV: • DEC. 27, 2024 PZC SUBMITTAL 1 • JAN. 21, 2024 PZC SUBMITTAL 2

NEW MULTI-TENANT BUILDING LANDLORD WORK - SITE/SHELL 1250-1254 OGDEN AVE. DOWNERS GROVE, IL 60561

SHEET NAME

EXTERIOR ELEVATIONS

PZC SUBMITTAL ONLY

A-2.1

1.21.2025

ORD 2025-10692 Page 19 of 167

1250-54 OGDEN AVE. - PROPOSED MULTI-TENANT RETAIL DEVELOPMENT - EXTERIOR MATERIALS

VIEW FROM OGDEN AVE.

ORD 2025-10692 Page 20 of 167

1250-54 OGDEN AVE. - PROPOSED MULTI-TENANT RETAIL DEVELOPMENT - EXTERIOR MATERIALS

628 White Haze

Brick Veneer

Color: Nori

Tenley Brick by Cultured Stone

Synthetic Stucco Finished Insulating System DRYVIT by Tremco Colors: As noted

618 Antique Gray

152 Anthracite Coal

2024.12.27 - FOR PRELIMINARY REVIEW

Stone Masonry Veneer Cast-Fit by Cultured Stone

Color: Carbon

CJ ARCHITECTS, INC.

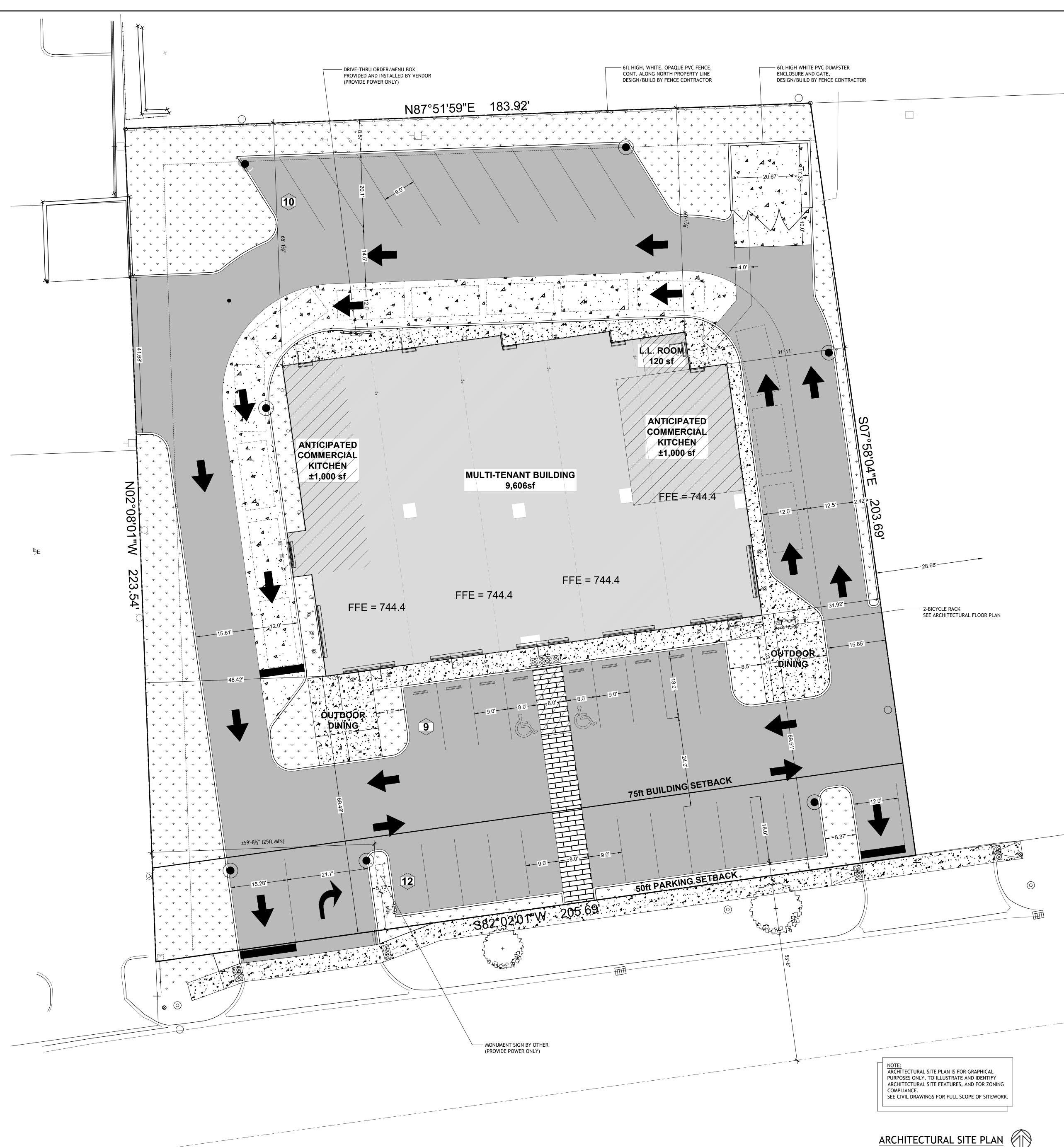
ORD 2025-10692 Page 21 of 167

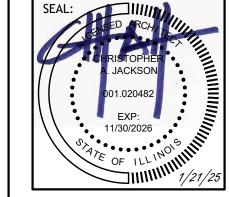
1250-54 OGDEN AVE. - PROPOSED MULTI-TENANT RETAIL DEVELOPMENT - EXTERIOR MATERIALS

DUMPSTER ENCLOSURE EXAMPLE

ORD 2025-10692 Page 22 of 167

1250-54 OGDEN AVE. - PROPOSED MULTI-TENANT RETAIL DEVELOPMENT - EXTERIOR MATERIALS




AERIAL VIEW

		ZONING	ANALYSIS		
Project Name:	New Retai	l Development			
Address:	1250-1254	Ogden Ave.			
PIN(s):	09-06-403-0	005			
Zoning District:	B3 - Genera	al Services and Highway Business D	istrict.		
Existing Use:	Retail/Com	mercial Building and Parking			
Proposed Use:	Retail/Com	mercial Building and Parking			
Petition Type:					
Deviations:	Special Use	e - Drive through			
Requirement	Factor	Required	Proposed/Existing		? Difference
District Area	Minimum	4 acres	N/A	N/A	N/A
Lot Area	Minimum	Not Required	41,505 sq. ft.	N/A	N/A
Building Coverage	Maximum	Not Restricted by ordinance	N/A	N/A	N/A
Ogden Ave. (& row)	Minimum	75' buildings, 50' canopies/pkng	119', 53'	YES	
Rear Yard	Minimum	Not Required	N/A	YES	
Int. Side Yard		Not Required	N/A	N/A	N/A
Height	Maximum	60'	24ft	YES	
Open Space	Minimum	10% of lot (4,150.5 sq. ft.)	18.5% (7,678 sq. ft.)	YES	
FAR	Maximum	0.75 (31,128.75)	0.231 (9,606 sq. ft.)	YES	
Parking	Minimum	Mixed use = 4 per 1,000sf (30)	31	YES	
	Minimum	BICYCLE: 2	2	YES	
	1		N/A	N/A	N/A

- VILLAGE OF DOWNERS GROVE CODES:

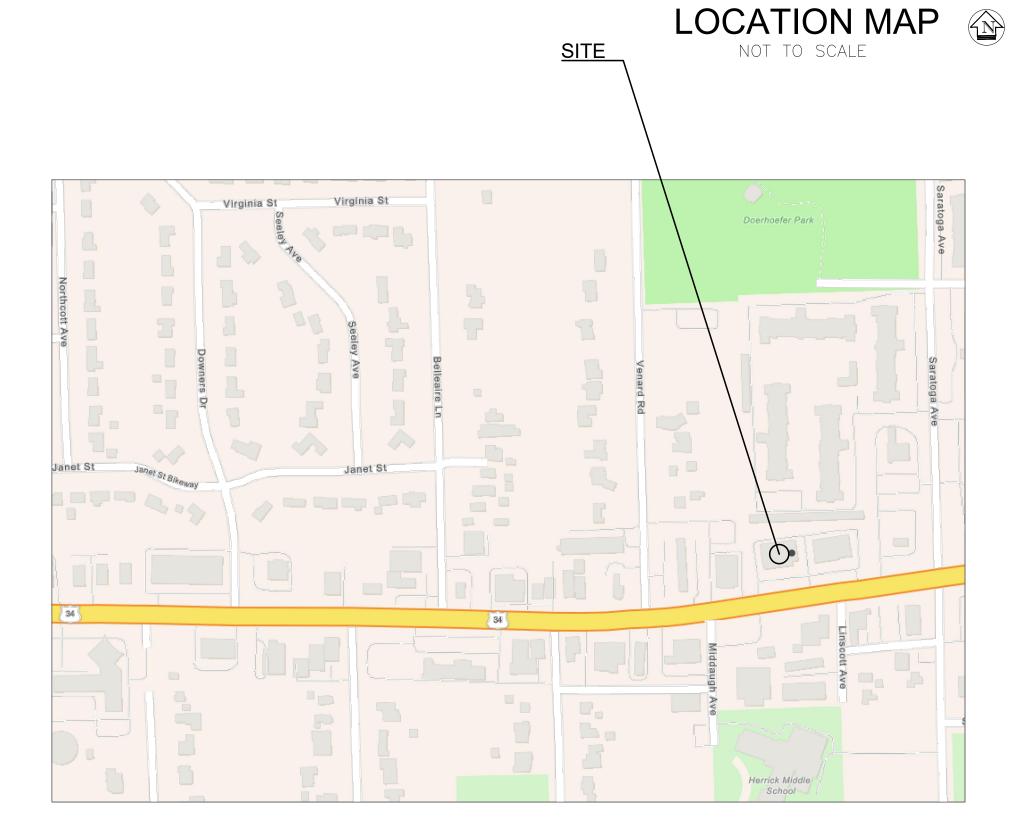
 Current Downers Grove Zoning Ordinance
- Current Downers Grove Stormwater and Flood Plain Ordinance 2021 International Building Code with D.G. amendments
- 2020 National Electric Code with D.G. amendments Current State of Illinois Plumbing Code with D.G. amendments
 2021 International Mechanical Code with D.G. amendments
- 2021 International Fuel Gas Code with D.G. amendments
- 2021 International Energy Conservation Code with D.G. amendments & State of Illinois amendments
- 2021 International Property Maintenance Code with D.G. amendments
 2021 International Fire Code with D.G. amendments
- 2015 Life Safety Code NFPA 101Current State of Illinois Accessibility Code

SUBMITTAL HISTORY: REV: • DEC. 27, 2024 PZC SUBMITTAL 1 • JAN. 21, 2024 PZC SUBMITTAL 2

CONSULTANT:

NEW MULTI-TENANT BUILDING
LANDLORD WORK - SITE/SHELL
1250-1254 OGDEN AVE.
DOWNERS GROVE, IL 60561

SHEET NAME ARCHITECTURAL SITE PLAN


PZC SUBMITTAL ONLY

1.21.2025

745.87 __ SBM SE BOLT LSD

SITE ENGINEERING COMMERCIAL REDEVELOPMENT

1250-54 OGDEN AVE., DOWNERS GROVE, IL

SURVEY LEGEND

NOTES:

LOCATION OF UTILITIES SHOWN HEREON IS CERTIFIED AT SURFACE STRUCTURES ONLY. UNDERGROUND LINES AS SHOWN ARE ESTIMATED LOCATIONS BASED ON AVAILABLE VISIBLE EVIDENCE, ENGINEERING PLANS AND OUR BEST JUDGMENT. ACTUAL LOCATIONS OF UNDERGROUND UTILITIES IN THE VICINITY OF ANY PROPOSED CONSTRUCTION SHALL BE VERIFIED BY EXCAVATION.

THE BASIS OF BEARINGS IS THE ILLINOIS STATE PLANE COORDINATE SYSTEM.

A J.U.L.I.E. LOCATE FOR THE UNDERGROUND UTILITIES WAS NOT PROVIDED AT THE TIME OF THE SURVEY. UNDERGROUND UTILITIES SHOWN ARE BASED ON OBSERVED EVIDENCE IN THE FIELD AND OUR BEST JUDGEMENT. LACKING EXCAVATION, THE TYPE AND LOCATION OF SAID UTILITIES CANNOT BE ACCURATELY, COMPLETELY, AND RELIABLY DEPICTED.

FOR BUILDING LINES, EASEMENTS AND OTHER RESTRICTIONS NOT SHOWN HEREON, REFER TO YOUR DEED, TITLE POLICY, ZONING ORDINANCE, ETC

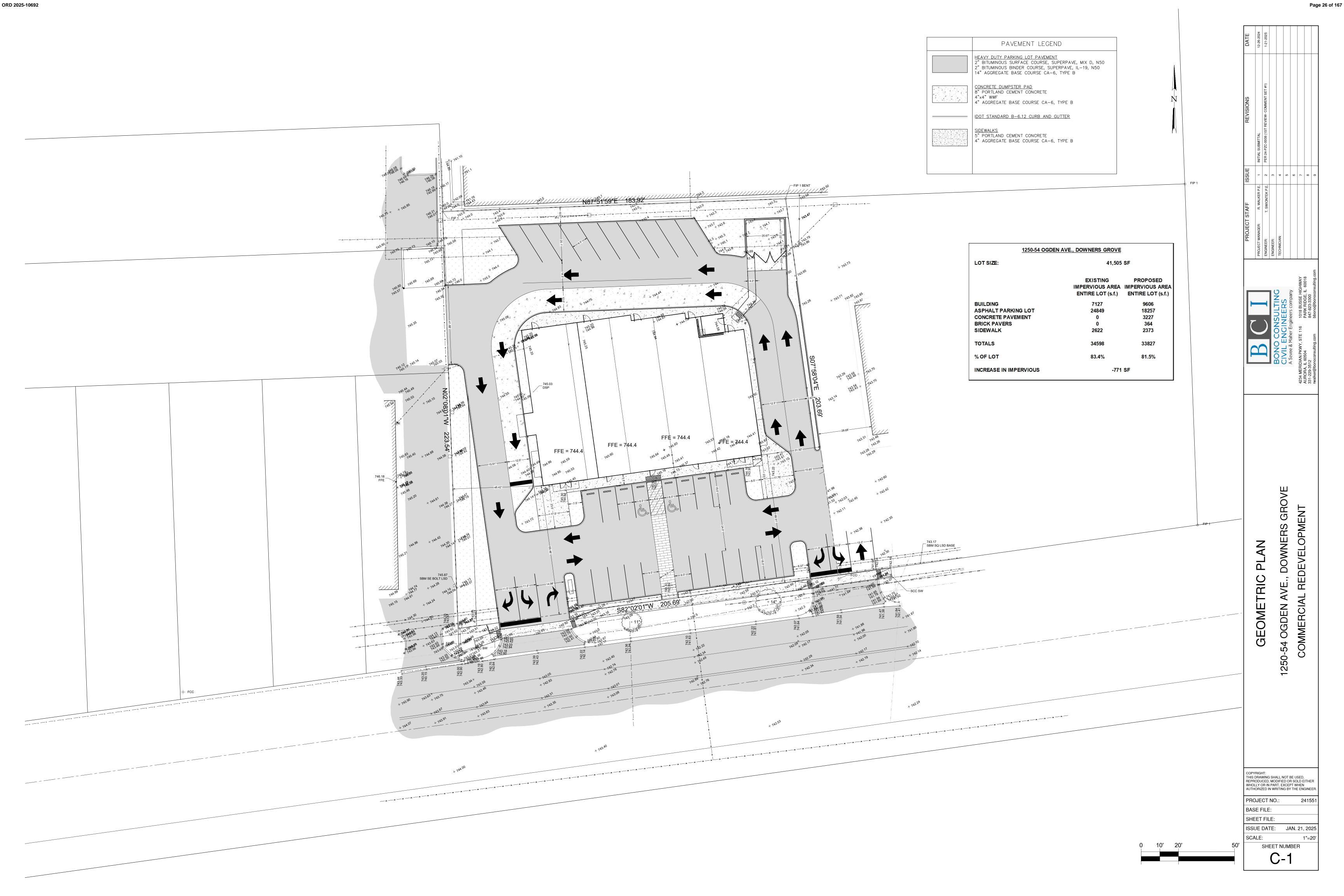
GENERAL NOTES:

- 1. The contractor is responsible for contacting JULIE for utility locates a minimum of 48 hours in advance of beginning excavation.
- 2. The contractor is solely responsible for safety on the job site. 3. The contractor shall be required to obtain all necessary permits as required,
- prior to commencing construction. 4. The Illinois Department of Transportation " Standard Specifications for Road and Bridge Construction", latest edition, and all addenda thereto, and Village of
- under this contract. 5. The "Standard Specifications for Water and Sewer Main Construction in Illinois," latest edition, shall govern the underground work under this contract, except as modified by these specifications, or where in conflict with Village of

Downers Grove requirements shall govern the earthwork and paving work

- Downers Grove Standards. 6. All work shall be conducted in accordance with OSHA requirements and
- Village of Downers Grove regulations and standards, and shall confirm in all respects to all state and federal laws and regulations. The contractor is solely 7. The Contractors shall notify all utility companies for filed locations of their facilities prior to hegipping construction. The Contractors of their responsible for safety on job site.
 - facilities prior to beginning construction. The Contractor will be responsible for the maintenance and preservation of these facilities. Any utility locations shown on the plans are based on available records and are for general direction only. 8. Construction operation shall be conducted in such a way as to prevent tracking of mud or soil, debris, asphalt and concrete onto public thoroughfares. At the end of each day, the contractor shall remove materials deposited onto public
 - streets and alleys. 9. Public streets and alleys shall be restored promptly meeting Village of Downers Grove standards and specifications.
 - 10. The contractor shall verify the exact elevation and location of all existing utilities and appurtenances prior to construction, to avoid interferences. 11. Appropriate precautions shall be taken to avoid damage to and to protect
 - existing utilities and appurtenances in the vicinity of work. 12. All building layouts should be done by a registered land surveyor after confirming the property corners in the field. Any discrepancies should be brought to the attention of the design engineer prior to initiating construction.

LEGEND	ABBREVIATIONS
⊚SAN-MH	SANITARY MANHOLE
ST-MH	STORM MANHOLE
€СВ	CATCH BASIN
■ INLET	INLET
₩VV	WATER VALVE VAULT
⊕B-BOX	B-BOX
¥FH	FIRE HYDRANT
-∳ ^{LP}	LIGHT POLE
₩UP	WOOD UTILITY POLE
©GV	GAS VALVE
⊠UB	UTILITY BOX
₽F-POLE	FLAG POLE
T/F=TOP OF	FOUNDATION
F/F=FINISH	FLOOR
C=TOP OF (CURB
G=GUTTER	
T/W=TOP O	F WALL


	G=GUTTER	
	T/W=TOP OF WALL	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		$ \bigcirc \overline{\otimes} \bigcirc \overline{\otimes} $
M. SW 062-0595 REGISTERE PROFESSIO ENGINEEI OF	I HEREBY CERTIFY THAT THIS PLAN WAS PREPARED BY ME OR UNDER MY DIRECT PERSONAL SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF ILLINOIS. 1-21-2025 SIGNATURE DATE MY LICENSE EXPIRES ON NOVEMBER 30, 2025	CO EXISTIN 1250-54 OGD COMMEF
ZZINO	SIGNATURE DATE	
//////////////////////////////////////	-25 MY LICENSE EXPIRES ON NOVEMBER 30, 2025	
EAP. 11-30	INDEX TO SHEETS	
	INDEA TO SHEETS	
NO.	DESCRIPTION	
C-0.0	COVER SHEET & TOPOGRAPHIC SURVEY	
C-0.1	DEMOLITION AND EROSION CONTROL PLAN	
C-1.0	GEOMETRIC PLAN	
C-2.0	UTILITY PLAN	COPYRIGHT:
C-3.0	GRADING PLAN	THIS DRAWING SHALL NOT BE USED, REPRODUCED, MODIFIED OR SOLD EIT
C-4.0	SWPPP	WHOLLY OR IN PART, EXCEPT WHEN AUTHORIZED IN WRITING BY THE ENGI
C-5.0 - C-5.3	DETAILS	PROJECT NO.: 24
C-6.0	CONSTRUCTION NOTES	BASE FILE:
		SHEET FILE:
		ISSUE DATE: JAN. 21, 2
		SCALE: 1"
		SHEET NUMBER
		C-0

GROVE

JAN. 21, 2025

ORD 2025-10692 **DEMOLITION NOTES** 1. The Illinois Department of Transportation " Standard Specifications for Road and Bridge Construction", latest edition, and all addenda thereto, and Village of Downers Grove requirements shall govern the earthwork and paving work under this contract. 2. The "Standard Specifications for Water and Sewer Main Construction in Illinois," latest edition, shall govern the underground work under this contract, except as modified by these specifications, or where in conflict with Village of Downers Grove Standards and Lake In The Hills Sanitary District's Code of Rules and Regulations. 3. All work shall be conducted in accordance with OSHA requirements and Village of Downers Grove regulations and standards, and shall confirm in all respects to all state and federal laws and regulations. The contractor is solely responsible for safety on job site. 4. The Contractors shall notify all utility companies for field locations of their facilities prior to beginning construction. The Contractor will be responsible for the maintenance and preservation of these facilities. Any utility locations shown on the plans are based on available records and are for general direction only. 5. All demolition debris shall be properly disposed of.
6. Demolition of existing sanitary sewer shall include removal up to the existing tap on the main line, installation of a permanent plug and encasement in concrete. SOIL EROSION AND SEDIMENTATION CONTROL NOTES: 1. Install row silt fence prior to any earth disturbing activities. REMOVE 2. Contractor to install construction entrance. 3. Contractor to install inlet filters in existing and proposed structures. ASPHALT 4. Contractor to remove any mud tracked onto existing pavement every night. 5. A concrete washout should be provided on-site. Concrete cannot be INSTALL SILT FENCE AROUND washed out into the public right-of-way or storm sewer system. 6. All disturbed greenspace areas to receive minimum 6" topsoil and be ENTIRE PROPERTY/WORK AREA temporary seeded upon achievement of final grade of that area. 7. All disturbed greenspace areas to be planted/lanscaped per landscape plan. Minimum seeding IDOT Type 1 turfgrass seeding per IDOT REMOVE ALL ASPHALT, CURB, specifications. CONCRETE, BUILDING, SIGNS INSTALL INLET BASKETS 40' CONSTRUCTION REMOVE SIDEWALK ENTRANCE *1 ALONG PROPERTY FRONTAGE MANUFACTURED COPYRIGHT:
THIS DRAWING SHALL NOT BE USED,
REPRODUCED, MODIFIED OR SOLD EITHER
WHOLLY OR IN PART, EXCEPT WHEN
AUTHORIZED IN WRITING BY THE ENGINEER PROJECT NO.: SHEET FILE: ISSUE DATE: JAN. 21, 2025 SHEET NUMBER

ORD 2025-10692

SANITARY SEWER NOTES:

- 1. FIELD VERIFY SANITARY SEWER LOCATION AND ELEVATION AND ALL CROSSINGS TO BE SURE SYSTEM WORKS AND ALL CONFLICTS ARE AVOIDED.
- 2. INSTALL NEW 6" SANITARY SEWER SERVICES AS SHOWN.
- 3. SEWER TO BE 8" AND 6" PVC SDR 26 PER ASTM D-3034 AND PUSH ON JOINTS PER ASTM
- 4. PROVIDE CA-7 TRENCH BACKFILL UNDER ALL PAVEMENT.
- 5. SANITARY MANHOLES TO BE PRE-CAST PER ASTM C478 WITH WATERTIGHT BOOT CONNECTIONS AND IDOT TYPE 1 FRAME AND LID WITH "SANITARY" CAST INTO LID.
- 6. FOLLOW ALL REQUIREMENTS OF DUPAGE COUNTY AND THE VILLAGE OF DOWNERS GROVE.
- 7. SANITARY SEWER SHALL BE AWWA C900 WATER MAIN QUALITY PIPE (OR APPROVED EQUAL) WITH PRESSURE RATED JOINTS PER ASTM D-3139 WITHIN 10' OF ANY WATER MAIN/SERVICE CROSSING.
- 8. ALL MATERIALS SHALL COMPLY WITH DUPAGE COUNTY AND THE VILLAGE OF DOWNERS GROVE CODE.

WATER NOTES:

- 1. FIELD VERIFY WATER MAIN LOCATION AND SIZE
- 2. INSTALL NEW 6" WATER SERVICES AS SHOWN.
- 3. WATER SERVICE TO BE 6" DUCTILE IRON, CLASS 52 PER ANSI/AWWA C151/A21.5 WITH CEMENT MORTAR LINING PER ANSI/AWWA C104/A21.4 AND PUSH ON JOINTS PER ANSI/AWWA C111/A21.11 AND POLYETHYLENE ENCASEMENT PER ANSI/AWWA C105/A21.5.
- 4. WATER MAIN TO BE 8" DUCTILE IRON, CLASS 52 PER ANSI/AWWA C151/A21.5 WITH CEMENT MORTAR LINING PER ANSI/AWWA C104/A21.4 AND PUSH ON JOINTS PER ANSI/AWWA C111/A21.11 AND POLYETHYLENE ENCASEMENT PER ANSI/AWWA C105/A21.5. 5. PROVIDE CA-7 TRENCH BACKFILL UNDER ALL PAVEMENT.
- 6. VALVE VAULT TO BE PRE-CAST PER ASTM C478 WITH IDOT TYPE 1 FRAME AND LID WITH
- "WATER" CAST INTO LID.
- 7. FOLLOW ALL REQUIREMENTS OF THE VILLAGE OF DOWNERS GROVE. 8. WATER SERVICE TO BE ENCASED WHERE NOTED. ENCASEMENT TO BE 12" C900 WATER MAIN QUALITY PIPE AND SHALL EXTEND 10' FROM EITHER SIDE OF THE CROSSING AND BE SEALED WITH A CASING SEAL.
- 9. ALL MATERIALS SHALL COMPLY WITH VILLAGE OF DOWNERS GROVE CODE.

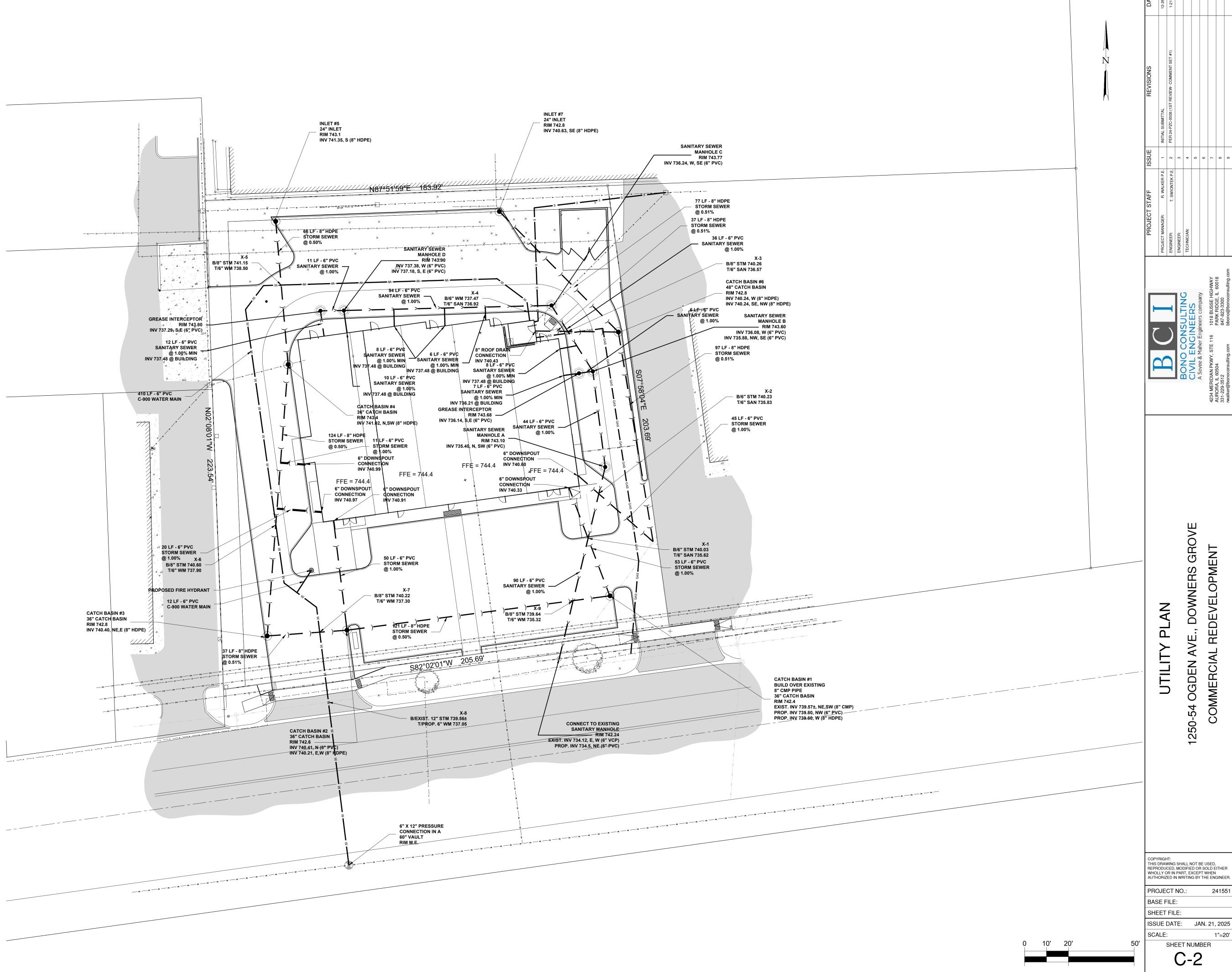
STORM SEWER NOTES:

- 1. FIELD VERIFY STORM SEWER LOCATION AND ELEVATION AND ALL CROSSINGS TO BE SURE SYSTEM WORKS AND ALL CONFLICTS ARE AVOIDED.
- 2. CONNECT TO EXISTING STORM SEWER STRUCTURE. FIELD VERIFY LOCATION AND
- ELEVATION PRIOR TO ANY STORM SEWER CONSTRUCTION. 3. STORM SEWER TO BE REINFORCED CONCRETE PIPE PER ASTM C76 OR PVC SDR 26 PIPE
- PER ASTM D3034
- 4. PROVIDE CA-7 TRENCH BACKFILL UNDER ALL PAVEMENT.
- 5. STORM SEWER STRUCTURES TO BE PRE-CAST PER ASTM C478 WITH STEPS 16" ON CENTER PER ASTM C478-05
- STORM SEWER SHALL BE AWWA C900 WATER MAIN QUALITY PIPE (OR APPROVED EQUAL) WITH PRESSURE RATED JOINTS PER ASTM D-3139 WITHIN 10' OF ANY WATER MAIN/SERVICE CROSSING.
- 6. FOLLOW ALL REQUIREMENTS OF THE VILLAGE OF DOWNERS GROVE.
- 7. ALL MATERIALS SHALL COMPLY WITH VILLAGE OF DOWNERS GROVE PLUMBING CODE.

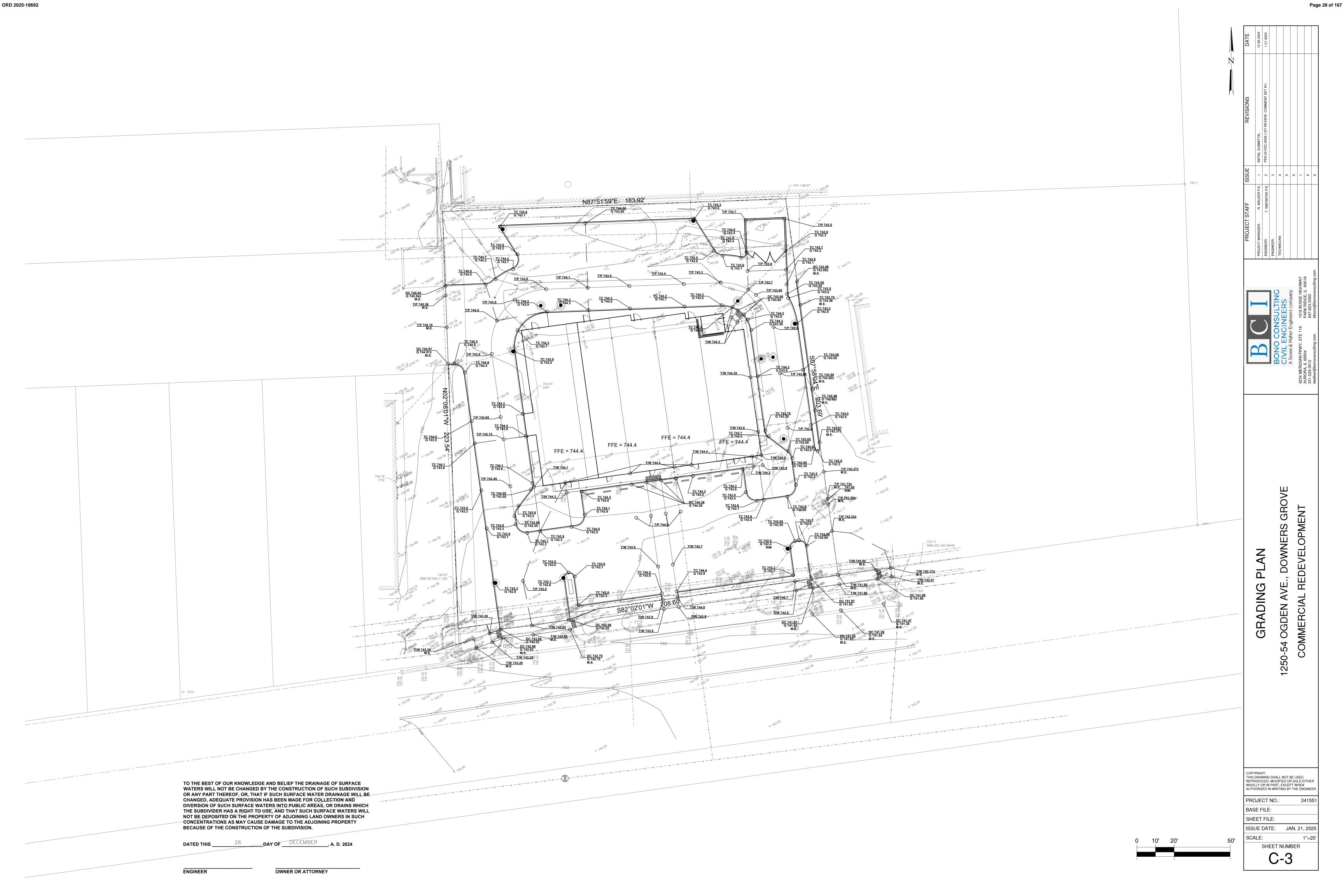
ROOF DRAIN NOTES:

- 1. ROOF DRAINS TO BE 6" PVC SDR 26 PIPE AT A MINIMUM 1.00% SLOPE. 2. ROOF DRAINS TO BE C900 WATER MAIN QUALITY PIPE WITHIN 10' OF WATER SERVICE.
- SEE NOTE #6 UNDER STORM SEWER NOTES.
- 3. FIELD ENGINEER ALL SLOPES TO AVOID CONFLICTS WITH OTHER PIPES. 4. PROVIDE CA-7 TRENCH BACKFILL UNDER ALL PAVEMENT.

STORMWATER MANAGEMENT NARRATIVE


SITE GRADED TO MAXIMIZE STORAGE AVAILABLE

SURFACE DETENTION BASIN MAXIMIZED


EXISTING RUNOFF IS DIRECTED TO THE STORM SEWER ALONG OGDEN AVENUE.

NOTE:

INSTALL INLET BASKETS IN ALL PROPOSED OPEN LID STORM STRUCTURES WITHIN OR ADJACENT TO THE PROPOSED WORK LIMITS

Page 27 of 167

Page 29 of 167 ORD 2025-10692

PLANT MATERIAL LIST Key Qty Botanical Name Common Name Ac 2 Amelanchier canadensis SHADBLOW SERVICEBERRY ArF 4 Acer rubrum 'Frank Jr' REDPOINTE MAPLE Cc 4 Cercis canadensis EASTERN REDBUD Gtv 2 Gleditsia triacanthos var. inermis 'Shademaster' | SHADEMASTER HONEYLOCUST TaR 3 Tilia americana 'Redmond' REDMOND LINDEN ORNAMENTAL SHRUBS CsB 7 Cornus sericea 'Bailey' BAILEY REDTWIG DOGWOOD DG 27 Diervilla 'G2X885411' KODIAK RED BUSH HONEYSUCKLE FSO 14 Forsythia Show Off Sugar Baby SHOW OFF SUGAR BABY FORSYTHIA SDP 8 Spirea Double Play Blue Kazoo' DOUBLE PLAY BLUE KAZOO SPIREA SDD 9 Spirea 'Double Play Doozie' DOUBLE PLAY BLUE DOOZIE SPIREA VIM 10 Viburnum lantana 'Mohican' MOHICAN VIBURNUM WfV 5 Weigela florida Verweig 6 SONIC BLOOM RED WEIGELA ORNAMENTAL GRASSES CaK 34 Calamagrostis acutiflora Karl Foerster' KARL FOERSTER FEATHER REED GRASS #3, I2" La 10 Leymus arenarius BLUE LYME GRASS

SHENANDOAH RED SWITCH GRASS

PASSIONATE RETURNS DAYLILY

DARK TOWERS BEARDTONGUE

SHOWY BLACK-EYED SUSAN

GOING BANANAS DAYLILY

#3, I2"

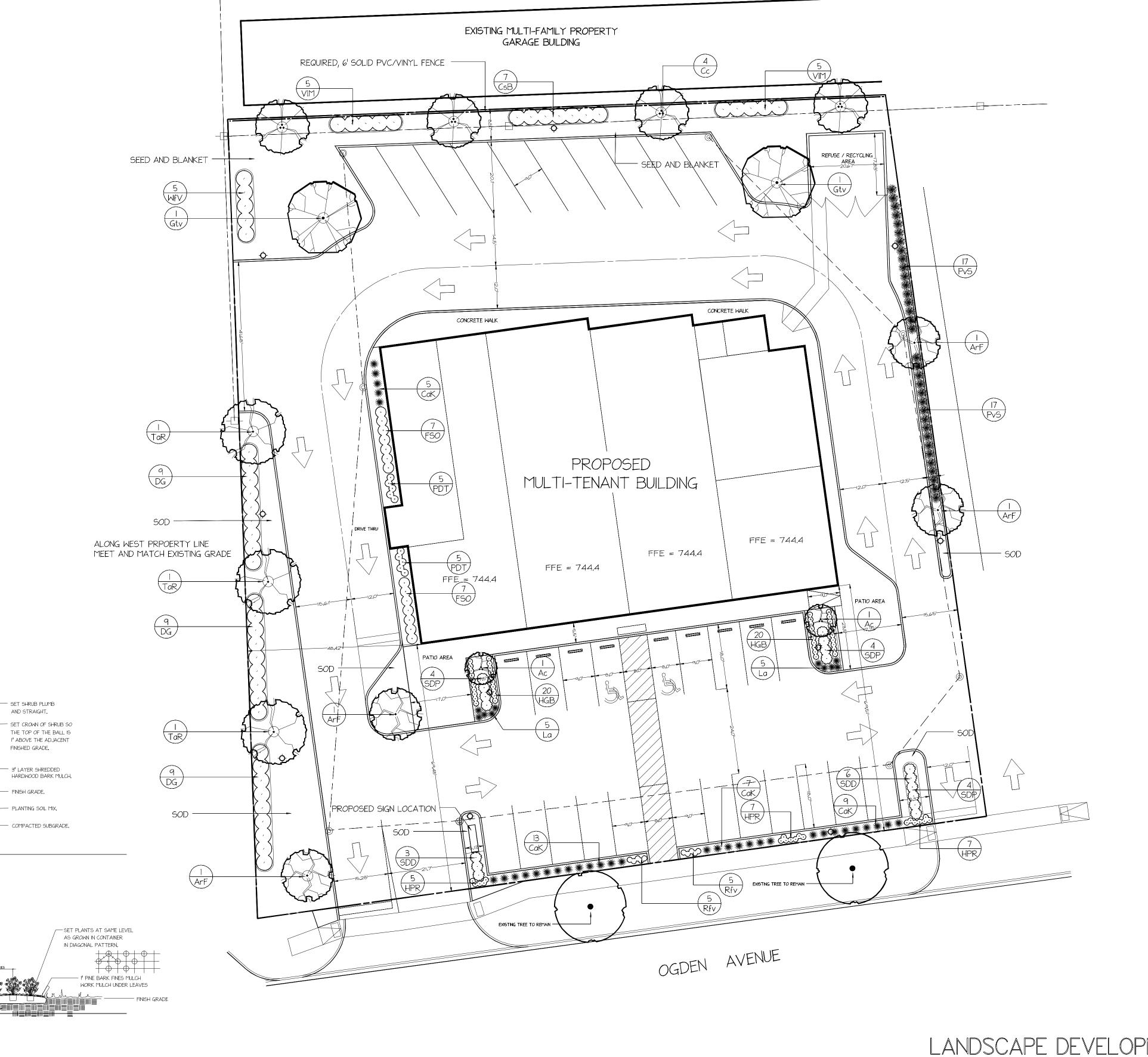
#|

#1

#1

PERENNIALS

- . GENERAL CONTRACTOR SHALL BE RESPONSIBLE TO REMOVE ALL CONCRETE, ASPHALT, GRAVEL AND CONSTRUCTION DEBRIS DUE TO DEMOLITION OF EXISTING PARKING LOT.
- . GENERAL CONTRACTOR SHALL FILL TURF AND PLANTING AREAS WITH CLEAN FILL AND ROUGH GRADE TO WITHIN 4" OF FINISH GRADE.
- B. ALL LANDSCAPE PLANTING BEDS MUST BE CROWNED TO PROVIDE POSITIVE DRAINAGE PER VILLAGE ORDINANCE 4. NEW BED AREAS WILL RECEIVE 2" MUSHROOM COMPOST ROTOTILLED BEFORE PLANT INSTALLATION.
- 5. NEW BED SHALL RECEIVE A SPADE CUT EDGE AND 2" BARK MULCH AFTER PLANTING.
- 6. TURF AREAS SHALL BE FINISHED GRADED, SODDED, OR SEED AND BLANKET AS NOTED ON PLAN. . AREAS TO BE GRADED AND PREPARED FOR SEEDING OR SOD SHALL
- INDICATE A MINIMUN OF FOUR (4) INCHES OF TOPSOIL
- B. BASED ON FINAL LIGHT POLE LOCATIONS PLANTINGS SHALL BE ADJUSTED IN THE FIELD
- AS NECESSARY TO AVOID CONFLICTS

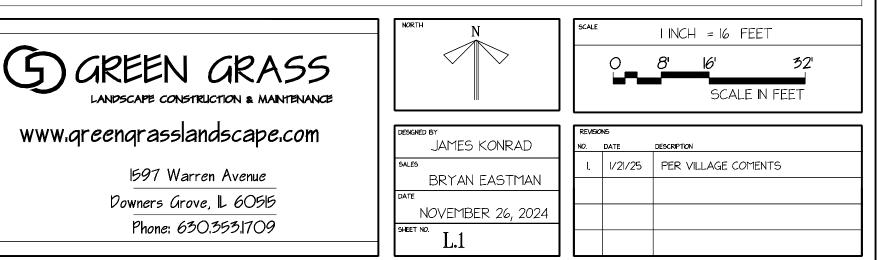

PvS 34 Panicum virigatum 'Shenandoah'

HGB 40 Hemerocallis 'Going Bananas'

Rfv 10 Rudbeckia fulgida var. speciosa

PDT 10 Penstemon 'Dark Towers'

HPR 19 Hemerocallis 'Passionate Returns'


- DO NOT CUT LEADER ON EVERGREENS OR PYRAMIDAL TREES. - PRUNE 1/3 OF CROWN, MAINTAINING NATURAL SHAPE, - WRAP TRUNK WITH APPROVED TREE WRAP TO FIRST BRANCH. - SET ROOTBALL APPROXIMATELY 3" HIGHER THAN FINISH GRADE. - 3" DEEP SHREDDED HARDWOOD - PREPARE A 3" MIN. SAUCER AROUND PIT. DISCARD EXCESS EXCAVATED MATERIAL BACKFILL PIT WITH PLANTING PIT CUT AWAY SYNTHETIC CORDS AROUND ROOTBALL AND TRUNK. - SET ROOTBALL ON UNDISTURBED TREE PLANTING DETAIL

HARDWOOD BARK MULCH. - PLANTING SOIL MIX. COMPACTED SUBGRADE. SHRUB PLANTING DETAIL PREPARE ENTIRE PLANTING BED ADMEND EXISTING SOIL WITH MUSHROOM COMPOST AT A RATE OF I C.Y. PER 100 S.F. ROTOTILL TO 8" DEPTH UNDISTURBED SUBGRADE

LANDSCAPE DEVELOPMENT PLAN

Indvestia Real Estate Partners NEW MULTI-TENANT BUILDING

1250 OGDEN AVENUE DOWNERS GROVE, ILLINOIS

ORD 2025-10692 Page 31 of 167

Proposed Mixed-Use Development 1250-1254 Ogden Avenue Downers Grove, Illinois

Part I. Introduction and Project Context

Gewalt Hamilton Associates, Inc. (GHA) has conducted a Traffic Impact Study (TIS) on behalf of Indvestia Capital for the proposed mixed-use development to be constructed at 1250-1254 Ogden Avenue. The approximately 1-acre subject site is located on the north side of US Rte 34 (Ogden Avenue), west of the signalized intersection with Saratoga Avenue in Downers Grove, Illinois. Per the December 17th, 2024, Overall Site Plan, prepared by cj architects, inc, Indvestia Capital is proposing to demolish the existing building and construct a single 9,606 square foot multi-tenant building. The site is served by two existing full movement accesses onto Ogden Avenue which will remain in place. The eastern of the two accesses is shared with the adjacent commercial development to the east. The western access is aligned with an access to a used car dealership "Auto House".

The following summarizes our findings and provides various recommendations for your consideration. *Appendices* referenced are in the Technical Addendum at the end of this document.

Part II. Background Information

Site Location Map and Roadway Inventory

Exhibit 1 provides a site location map. The existing traffic operations in the site area are illustrated on **Exhibit 2**. **Appendix A** provides a photo inventory of operations along the site frontage. Pertinent comments to the adjacent roadways include:

Ogden Avenue (US Route 34)

- Ogden Avenue is an east-west Principal Arterial under the jurisdiction of the Illinois Department of Transportation (IDOT).
- Along the site frontage, Ogden Avenue provides two travel lanes in each direction separated by a wide (±12foot), flush median marked as a Two Way Left Turn Lane (TWLTL).
- Ogden Avenue has a posted speed limit of 35 miles per hour (mph) in the vicinity of the site.
- Separate eastbound and westbound left turn lanes are provided at the signalized intersection with Saratoga Avenue.
- The Annual Average Daily Traffic (AADT), year 2023, on Ogden Avenue was 30,000 vehicles per day.

Saratoga Avenue

- Saratoga Avenue is a north south, local route under the jurisdiction of the Village of Downers Grove.
- Saratoga Avenue provides one travel lane in each direction and provides dedicated left turn lanes at its signalized intersection at Ogden Avenue.
- Saratoga Avenue has a posted speed limit of 25 mph.
- No historic Annual Average Daily Traffic is available for Saratoga Avenue.
- Saratoga Avenue provides access to Downers Grove North High School to the south of the intersection.

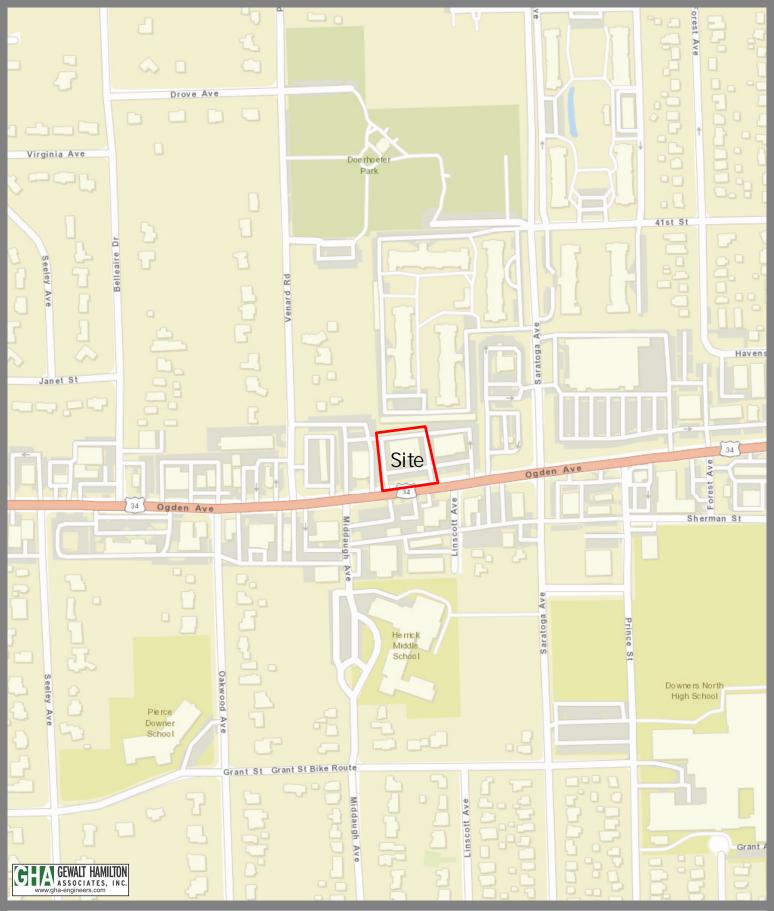
Linscott Avenue

- Linscott Avenue is a local roadway that intersects Ogden Avenue approximately 90 feet east of the east driveway to the site.
- Linscott Avenue is stop-controlled at its intersection with Ogden Avenue and provides one travel lane in each direction.
- No speed limit is posted on Linscott Avenue and no historical AADT volume is available.

Proposed Mixed-Use Development 1250-1254 Ogden Avenue Downers Grove, Illinois

Pedestrian Facilities

- Sidewalks are provided on both sides of Ogden Avenue in the site vicinity.
- Sidewalks are provided on both sides of Saratoga Avenue in the site's vicinity.
- Crosswalks are provided at all four legs of the signalized Ogden Avenue and Saratoga Avenue intersection. Pushbuttons and Pedestrian signals are also provided.
- School crossing signs are provided along Ogden Avenue.


Transit

 PACE Route 722 operates along Ogden Avenue in the site vicinity, and has an eastbound stop located southwest of the site and has east and westbound stops located to the east of the Ogden Avenue and Saratoga Avenue intersection. These stops were observed in the field and verified on the PACE website www.pacebus.com.

Surrounding Area Land Use

- The surrounding area includes mostly commercial land use along Ogden Avenue. The lot shares access with a restaurant to the west and a second mixed-use building to the east.
- Saratoga Avenue provides access to Downers Grove North High School. Middle and elementary schools are also located south of the development site.

Page 33 of 167 ORD 2025-10692

1 inch = 500 Feet

Exhibit 1 - Location Map

ORD 2025-10692 Page 34 of 167

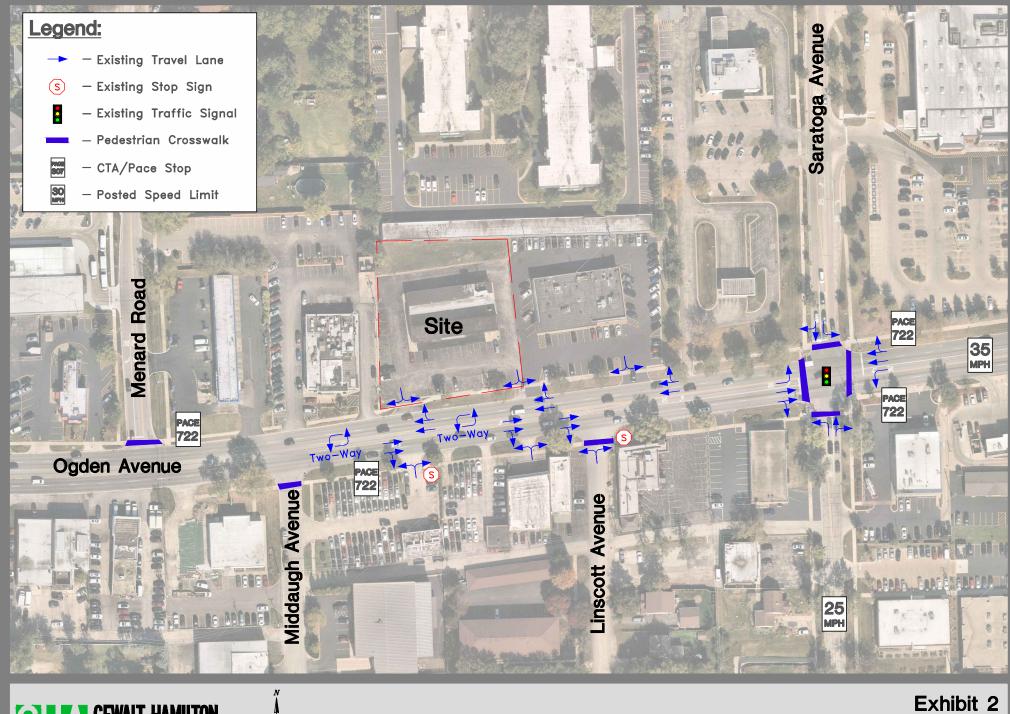


Exhibit 2 Existing Traffic Operations

ORD 2025-10692 Page 35 of 167

Proposed Mixed-Use Development 1250-1254 Ogden Avenue Downers Grove, Illinois

Existing Traffic

Exhibit 3 summarizes the existing weekday morning, evening, and Saturday midday peak hour traffic volumes. Peak period traffic turning movement counts were conducted by GHA on Thursday, December 5th, 2024, from 7:00 AM to 9:00 AM and from 4:00 PM to 6:00 PM, and on Saturday, December 7th, 2024, from 11:00 AM to 1:00 PM at the Ogden Avenue intersections with the west site drive/*Auto House* access, Linscott Avenue/east site drive, and Saratoga Avenue. The observed weekday morning and evening peak hours generally occurred from 7:30 to 8:30 AM, 4:30 to 5:30 PM respectively, and the Saturday midday peak hour generally occurred from 12:00 to 1:00 PM. *Exhibit 3* also provides the AADT (24-hour volume) along Ogden Avenue as published by IDOT on their website: www.gettingaroundillinois.com.

No unusual activities (e.g., roadway construction, or inclement weather) were observed during our counts that would be expected to impact traffic volumes or travel patterns in the vicinity. Summaries of the 2024 existing traffic counts can be found in *Appendix B*.

ORD 2025-10692 Page 36 of 167

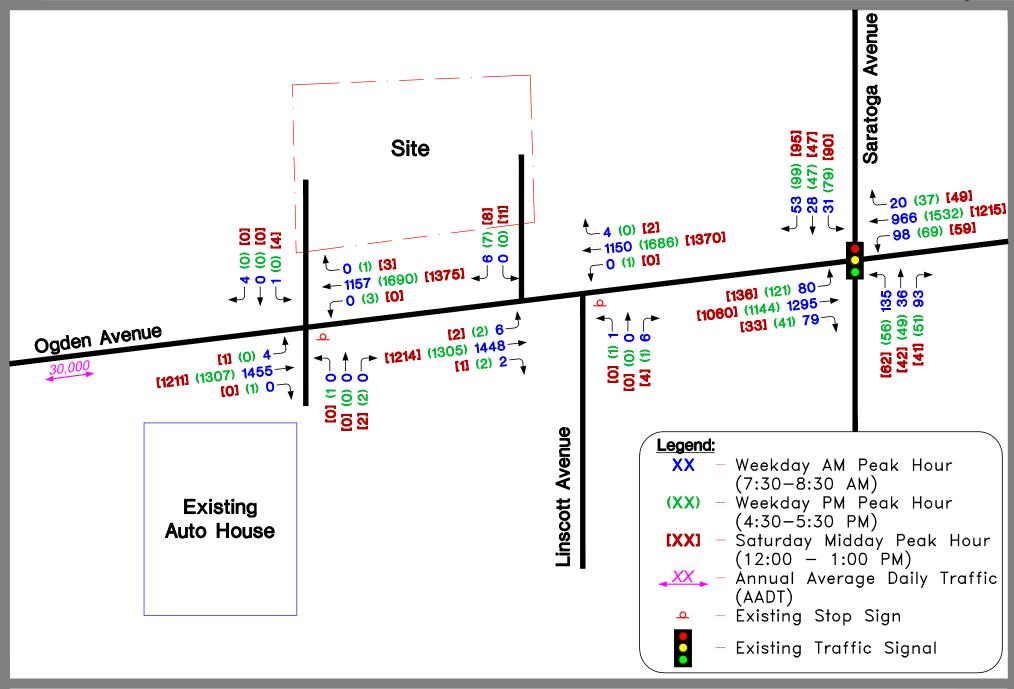


Exhibit 3

Existing Traffic

Sources: 1) GHA December, 2024 2) IDOT 2023 AADT

Crash Analysis

Crash data was obtained from the IDOT Division of Transportation and Safety for the last five available calendar years, 2019 through 2023. A summary of the crash data is provided in *Table 1* with the locations mapped on the exhibit contained in *Appendix C*.

Table 1: Crash Summary (2019-2023)

	No. of	PD	3	Severity	A	F				Cra	ash Ty	pe ^B				Percent
Location	Crashes	. –	Α	В	С	Ĭ '	Α	FO	FTF	FTR	SS	Т	PED	BIKE	0	Wet / Icy
Intersections (Crashes within 250 ft of In	ntersectio	n)														
Ogden Avenue at Saratoga Avenue	35	26	2	3	4	-	1	-	-	11	4	14	2	2	1	20%
Ogden Avenue at Linscott Ave/east dr	5	4	-	-	1	-	-	-	-	4	1	-	-	-	-	0%
Ogden Avenue at west drive	3	1	-	1	1	-	-	-	-	2	-	1	-	-	-	33%
Total =	43	31	2	4	6	0	1	0	0	17	5	15	2	2	1	19%

APD=Property Damage Only, A=Type A (incapacitating injury), B=Type B (non-incapacitating injury), C=Type C (possible injury), F= Fatal Injury

As shown in **Table 1**, the intersection of Ogden Avenue and Saratoga Avenue experienced the highest number of crashes within the study area over the five-year analyses period, with an average of 7 crashes per year. Approximately 74 percent (26 of 35) of the crashes involved property damage only. The most prevalent crash type was turning crashes, with 40 percent (14 of 35), and the second highest crash type was front to rear, with 31 percent (11 of 35). Of the injury crashes at this intersection, two were Type-A, three were Type-B, and four were Type-C.

The intersection of Ogden Avenue and Linscott Avenue experienced the next highest number of crashes with an average of 1 crash per year. Approximately 80 percent (4 of 5) of the crashes at this intersection involved property damage only and 80 percent were front-to-rear collisions. One crash at this intersection during the study period was a Type-C injury crash.

The intersection of Ogden Avenue and the west site drive experienced the lowest number of crashes with an average of 1 crash every 2 years. Approximately 33 percent (1 of 3) of the crashes at this intersection involved property damage only and 67 percent were front-to-rear collisions. One crash at this intersection during the study period was a Type-B injury crash, and one was a Type-C injury crash.

There were four crashes that involved pedestrians or bicyclists during the study period. All four of these crashes occurred at the Ogden Avenue intersection with Saratoga Avenue. Three of the four crashes occurred during dry, daytime conditions, and one occurred in dark, snowy conditions. The four crashes resulted in one Type-A injury, two Type-B injuries, and one Type-C injury.

BA=Angle, FO=Fixed Object, FTF=Front-to-Front, FTR=Front-to-Rear, SSD=Sideswipe Same Direction, T=Turning, PED=Pedestrian, BIKE=Pedacy clist, O=Other

Page 38 of 167

No-Build Traffic

Traffic growth in the area is a function of expected land development in the region. Future traffic volume conditions were developed for the year 2031, build-out year of the development (year 2026) plus five years. Based on a review of historical traffic volumes and the Chicago Metropolitan Agency for Planning (CMAP) 2050 projections (see *Appendix D*), traffic volumes along the roadways surrounding the site are assumed to experience an overall annual compounded growth rate of 0.50% per year. Accordingly, the 2031 No-Build peak hour traffic volumes (see *Exhibit 4*) were developed by applying the predicted growth rates to the existing traffic.

ORD 2025-10692 Page 39 of 167

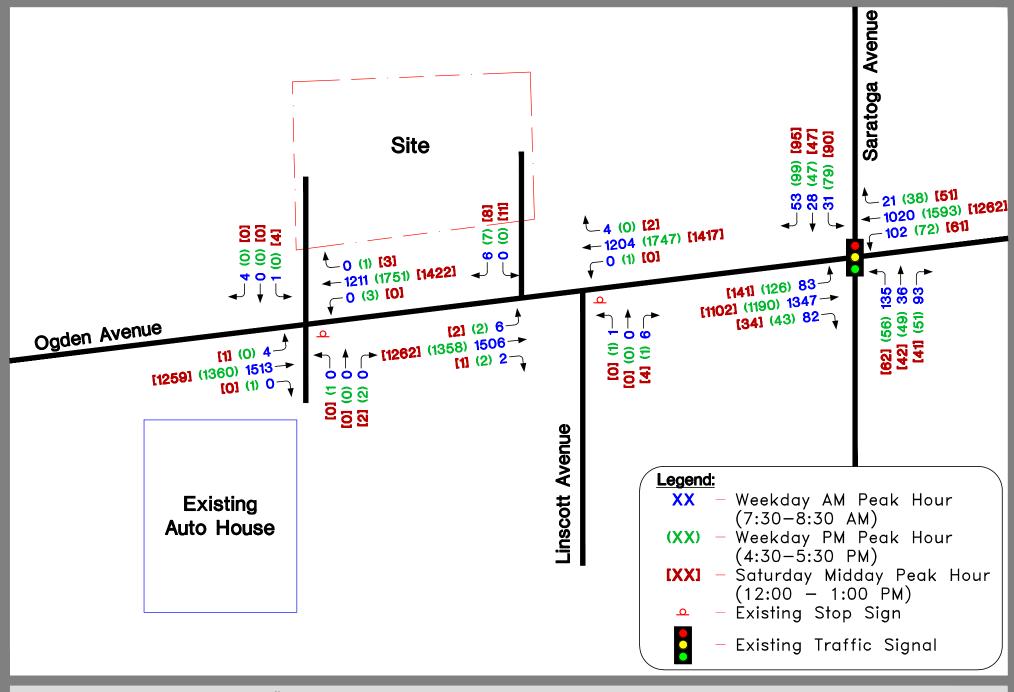


Exhibit 4
Year 2031 No-Build Traffic

ORD 2025-10692 Page 40 of 167

Proposed Mixed-Use Development 1250-1254 Ogden Avenue Downers Grove, Illinois

Part III. Traffic Evaluation

Future Site Characteristics

Proposed Development Plan

Indvestia Capital proposes to construct a single 9,606 square-foot mixed-use building on the approximately 1-acre subject site located on the north side of Ogden Avenue west of the Saratoga Avenue intersection in Downers Grove, Illinois. Site access onto Ogden Avenue is provided by two full-access drives, with one located approximately 420 feet west of the Ogden Avenue and Saratoga Avenue intersection, and one located approximately 155 feet further west. Cross access to both neighboring properties is available but to be conservative, all new site traffic was assigned to the on-site access points. The building is anticipated to be broken out into 5 units, with at least two restaurants (one with drive-through) anticipated. Tenants are not known at this time, so general land use of "Strip Retail Plaza" was applied. 31 parking spaces are proposed to be provided for the new development. A one-way counter-clockwise flow is proposed around the building to facilitate drive-through stacking and to provide access to parking in the rear of the building.

Access spacing dimensions are also illustrated on Exhibit 5A & 5B.

The December 17th, 2024, Overall Site Plan is provided in *Appendix E*.

Trip Generation

Table 2 summarizes the traffic generation calculations for the proposed development. Trip generation rates published by the Institute of Transportation Engineers (ITE) in the 11th Edition of the Manual *Trip Generation* were used to determine the anticipated traffic generated by the proposed development. Saturday data for fast-food restaurant without a drive through is not available so the most similar use (Fast Casual Restaurant) was used to estimate Saturday midday trips for that land use. Also included in our calculations are the estimated traffic volumes associated with the re-use of the existing building as a medical office space.

Unlike the existing medical use, not all vehicle trips expected to be generated by the proposed project represent new trips on the study area roadway system. Studies have shown that for restaurant developments, a substantial portion of the site generated vehicle trips are already present in the adjacent passing stream of traffic or are diverted from another route to the proposed site. Based on data presented in the ITE *Trip Generation Handbook*, 3rd Edition, the average pass-by trip percentage for the Restaurant with Drive-Through use is 50 percent in the weekday morning peak hour, and 55 percent in the weekday evening peak hour. In addition, to provide a conservative analysis for the balance of the building, a 20 percent reduction for pass-by traffic was applied to the Saturday and non-drive-through restaurant-generated trips. It should be noted that the volume of pass-by traffic does not reduce the total trips generated and those trip volumes will still be realized as turning movements at the site driveways.

As can be seen in *Table 2* the proposed mixed-use development is expected to generate approximately 119 new trips (combined inbound and outbound) during the weekday morning peak hour, 129 new trips (combined inbound and outbound) during the weekday evening peak hour, and 171 new trips (combined inbound and outbound) during the Saturday midday peak hour.

See **Appendix F** for excerpts of the ITE manual and **Appendix G** for excerpts of the ITE *Trip Generation Handbook* detailing the pass-by trip percentage.

Table 2: Trip Generation Calculations

					V	Veekda	ay Peal	k Hour	s		
Land Use		ITE		Mornin 0-8:30	_		Evening 0-5:30			aturda 0-1:00	•
	Size	Code	ln	Out	Sum	ln	Out	Sum	ln	Out	Sum
Existing Medical Office Building	g										
Medical Office	7,855 SF	720	19	5	24	9	22	31	14	10	24
Multi-Use Commercial Building											
Restaurant With Drive-Through Window	2,084 SF	934	48	45	93	36	33	69	59	56	115
Fast Food Restaurant (No Drive Through Window)		933	41	29	70	30	29	59	29	23	52
Strip Retail Plaza (<40k SF)	5,892 SF	822	12	8	20	27	26	53	20	19	39
Total Trips			101	82	183	93	88	181	108	98	206
Less Pass-By Trips, Publishe	d Values	N/A	-24	-24	-48	-20	-20	-40	0	0	0
Less Pass-By Trips, 20% E	Estimate	N/A	-8	-8	-16	-6	-6	-12	-18	-18	-35
New Trips			69	50	119	67	62	129	90	80	171
NET New Trips			50	45	95	58	40	98	76	70	147

Sources:ITE Trip Generation Manual, 11th Edition - See Appendix F, ITE Trip Gen Pass-By Table - See Appendix G

Trip Distribution

Table 3 provides the anticipated distribution of site traffic. This was based on existing site travel patterns, proposed access, and the operational characteristics of the adjacent street system.

Table 3: Trip Distribution

Route & Direction	Percent Route To/From Site
Ogden Avenue	
West of Saratoga Avenue	45%
East of Saratoga Avenue	45%
Saratoga Avenue	
North of Ogden Avenue	5%
South of Ogden Avenue	5%
Linscott Avenue	
South of Ogden Avenue	0%
Totals =	100%

Traffic usage of the area roadway network is also illustrated on *Exhibits 5A & 5B*.

Site and Total Traffic Assignments

Exhibits 5A & 5B illustrate the site traffic assignments for the development's trips, which are based on the traffic characteristics summarized in **Tables 2 and 3** (traffic generation and trip distribution) and assigned to the area roadways. As previously noted, the proposed development is anticipated to open in 2026. Therefore, we have considered the total impacts of the complete development for the year 2031, or buildout plus five years.

The site traffic (*Exhibits 5A & 5B*) and 2031 No-Build traffic (*Exhibit 4*) were combined to produce the 2031 Total traffic, which is illustrated on *Exhibit 6*.

ORD 2025-10692 Page 43 of 167

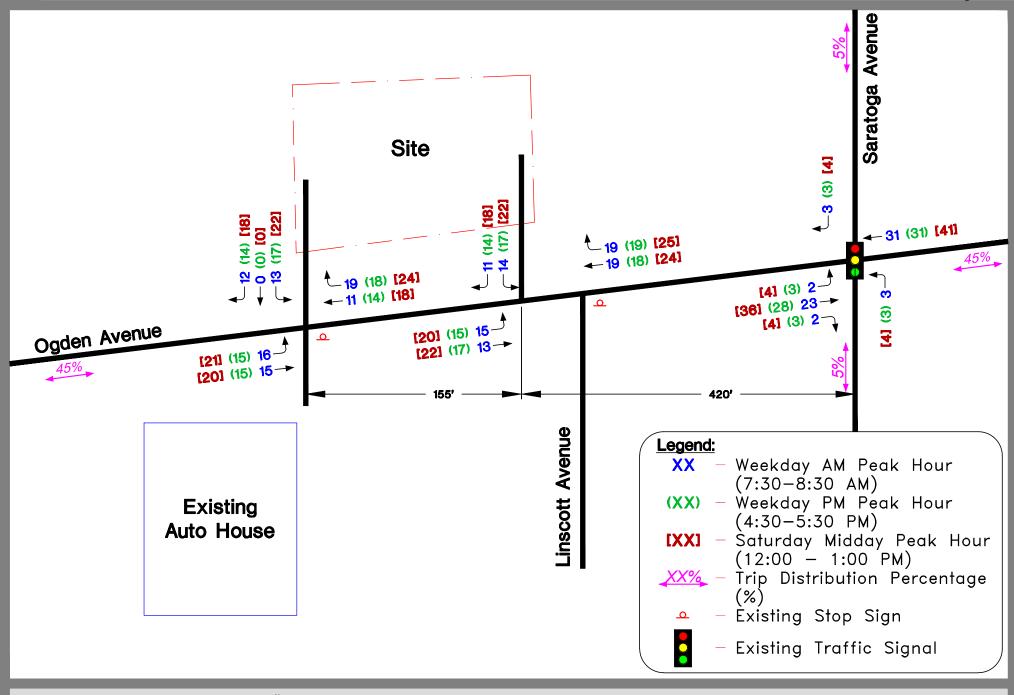


Exhibit 5A Site Traffic ORD 2025-10692 Page 44 of 167

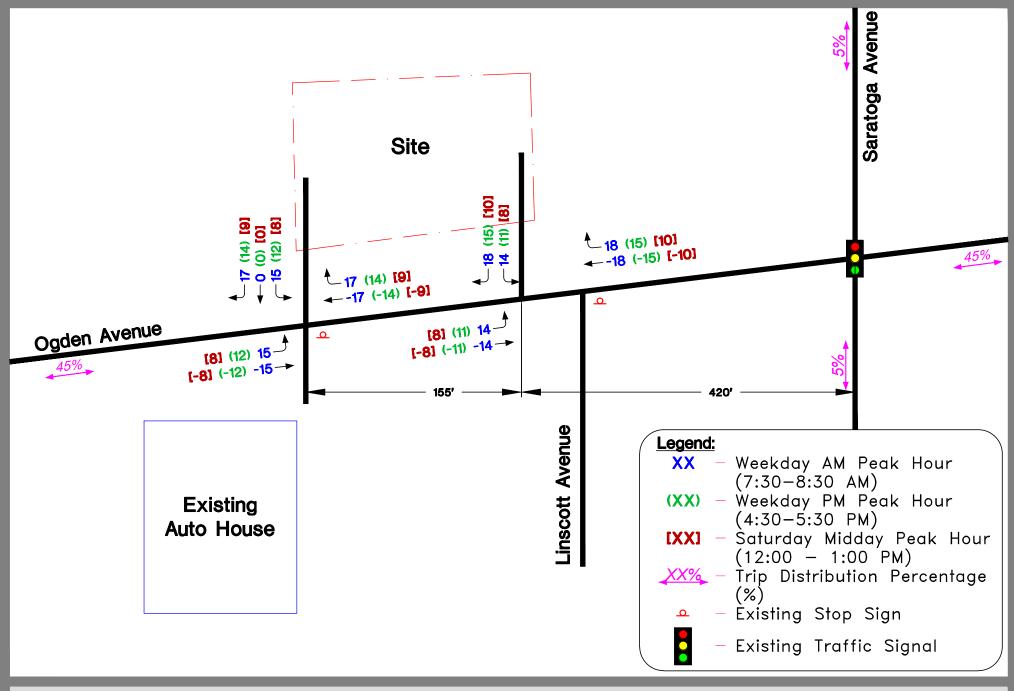


Exhibit 5B Pass-By Traffic

ORD 2025-10692 Page 45 of 167

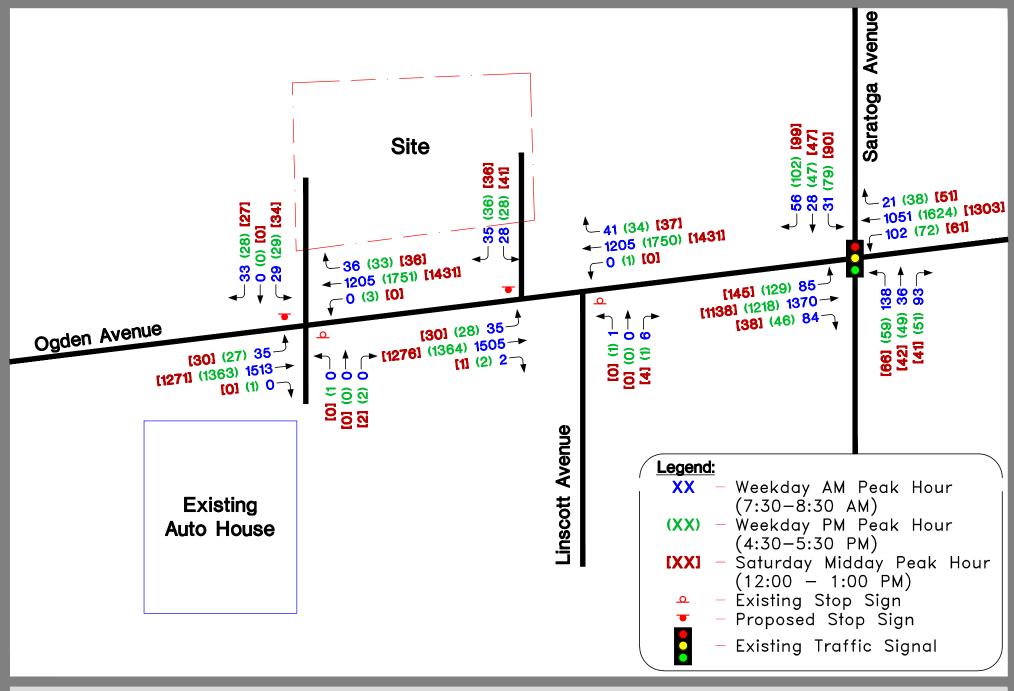


Exhibit 6
Year 2031 Total Traffic

ORD 2025-10692 Page 46 of 167

Proposed Mixed-Use Development 1250-1254 Ogden Avenue Downers Grove, Illinois

Capacity Analysis

Capacity analyses are a standard measurement that identifies how an intersection operates. They are measured in terms of Level of Service (LOS). The concept of LOS is defined as a qualitative measure describing operational conditions within a traffic stream and their perception by motorists and/or passengers. A level-of-service definition provides an index to quality of traffic flow in terms of such factors as speed, travel time, freedom to maneuver, traffic interruptions, comfort, convenience, and safety.

Six Levels of Service are defined for each type of facility. They are given letter designations from A to F, with LOS A representing the best operating conditions and LOS F the worst. LOS C is often considered acceptable for design purposes and LOS D is usually considered as providing the lower threshold of acceptable operations. Since the level of service is a function of the traffic flows placed upon it, the facility may operate at a wide range of levels of service, depending on the time of day, day of week or period of year. A description of the operating condition under each level of service, based on the analysis parameters as published in the Transportation Research Board's (TRB) Highway Capacity Manual (HCM), Seventh Edition, is provided in *Table 4*.

Delay (sec/veh) LOS **Description** Traffic Signal Stop Sign Describes conditions with little to no delay to motorists. < 10 <10 В Represents a desirable level with relatively low delay to motorists. >10 and < 20 >10 and < 15 C Describes conditions with average delays to motorists. >20 and < 35 >15 and < 25 Describes operations where the influence of congestion becomes more D noticeable. Delays are still within an acceptable range. >35 and < 55 >25 and < 35 Represents operating conditions with high delay values. This level is often Ε considered within urban settings or for minor streets intersecting major arterial roadways to be the limit of acceptable delay. >55 and < 80 >35 and < 50 Is unacceptable to most drivers with high delay values that often occur when F arrival flow rates exceed the capacity of the intersection. >80 >50

Table 4: Level of Service (LOS) Summary

Capacity analyses were performed using the methodologies outlined in the HCM, for the following scenarios:

- Existing Traffic –Existing traffic (year 2024),
- No-Build Traffic Future (non-site, year 2031) traffic with background growth, and
- Total Traffic Future No-Build traffic volumes (year 2031) plus the addition of the site generated traffic.

2031 Total traffic conditions assumed the following:

- The site entrances operate with stop control, as no existing stop signs or stop bars were observed.
- The site entrances were analyzed in the existing condition, as well as with the recommended left-turn lane added to each entrance.

Table 5 summarizes the intersection capacity and queue analysis results.

Table 5: Level-of-Service Summary

						Mον	emen/	t Gro	up By	y Appr	oach				Overall
	Intersection / Timeframe	Roadway Conditions	>:	= Sha	red La	ane	- = No	n Cri	tical	or Not	Allo	wed N	loveme	ent	
		•	Ea	astbou	nd	We	estbou	ınd	No	rthbou	nd	So	uthbou	nd	Intersection
1. Ogden	Avenue at Saratoga Avenue	Traffic Signal	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	ΤH	RT	
		• LOS	Α	В	В	Α	Α	Α	Е	D	<	Е	D	<	В
Δ	A. Existing Traffic (See Exhibit 3)	• Delay	6.5	11.5	11.5	8.7	9	9	67.1	51.6	-	56.8	49.3	-	16.3
^	L Existing Traffic (Occ Exhibit 3)	95th Queue Length (ft)	28	378	375	34	247	246	222	185	-	46	112	-	-
L		 Approach LOS (Delay) 		B (11.2)		A (9.0)			E (59.5)			D (51.3)		-
		• LOS	Α	В	В	В	Α	Α	Е	D	<	Е	D	<	В
AM L	3. 2031 No-Build Traffic (See Exhibit 4)	 Delay 	6.7	12.5	12.9	10.1	9.3	9.3	67.2	51.6	-	56.8	49.3	-	16.8
Peak	5. 2031 NO-Build Hailic (See Exilibit 4)	 95th Queue Length (ft) 	29	431	395	36	263	262	224	189	-	46	114	-	-
		 Approach LOS (Delay) 		B (12.4)		A (9.4)			E (59.6)			D (51.4)		-
		• LOS	Α	В	В	Α	Α	Α	Е	D	<	Е	D	<	В
	2 2024 Total Traffic (Can Exhibit 6)	 Delay 	6.9	12.1	12.2	9.7	9.5	9.5	69.8	51.6	-	56.8	49.4	-	16.7
ا	C. 2031 Total Traffic (See Exhibit 6)	95th Queue Length (ft)	30	411	408	36	272	271	230	185	-	46	116	-	-
		 Approach LOS (Delay) 		B (11.9)		A (9.5)			E (61.0)			D (51.4)		-
		• LOS	В	Α	Α	Α	В	В	Ε	D	<	Е	E	<	В
	A Frainting Traffic (One Frail it it 2)	 Delay 	11.6	9.4	9.5	7.1	12.6	12.7	65.7	54.7	-	62.5	59.3	-	16.7
A	A. Existing Traffic (See Exhibit 3)	95th Queue Length (ft)	58	311	306	25	468	468	94	153	-	130	227	-	-
		 Approach LOS (Delay) 		A (9.6)			B (12.4)		E (58.7)			E (60.4)		-
		• LOS	В	Α	Α	Α	В	В	Е	D	<	Ε	Е	<	В
PM L	0.0004 No. Duild Tarffic (Occ. Falcibit 4)	 Delay 	13.4	9.7	9.8	7.3	13.2	13.3	65.7	54.7	-	62.5	59.3	-	17.0
Peak B	3. 2031 No-Build Traffic (See Exhibit 4)	95th Queue Length (ft)	73	328	323	26	498	498	94	153	-	130	227	-	-
		Approach LOS (Delay)		B (10.1)		B (13.0)		E (58.7)			E (60.4)		-
		•LOS	В	В	В	Α	В	В	Е	D	<	Е	E	<	В
	2 2024 Tatal Traffic (Can Fubility C)	 Delay 	14.9	10.2	10.2	7.7	13.9	14.1	65.7	54.7	-	61.9	59.1	-	17.5
C	C. 2031 Total Traffic (See Exhibit 6)	95th Queue Length (ft)	84	344	339	27	524	524	100	152	-	130	231	-	-
		 Approach LOS (Delay) 		B (10.6)		B (13.7)		E (58.5)			E (60.1)		-
		• LOS	Α	Α	Α	Α	В	В	Е	D	<	Е	Е	<	В
۱,	A. Existing Traffic (See Exhibit 3)	 Delay 	8.4	9.0	9.1	6.8	11.0	11.0	65.5	53.6	-	61.5	58.2	-	16.3
^	a Existing Hamic (See Exhibit 5)	 95th Queue Length (ft) 	50	284	282	22	360	357	106	126	-	151	222	-	-
		 Approach LOS (Delay) 		A (9.0)			B (10.8)		E (58.7)			E (59.5)		-
		• LOS	Α	Α	Α	Α	В	AB	Е	D	<	Е	Е	<	В
SAT	3. 2031 No-Build Traffic (See Exhibit 4)	 Delay 	9.0	9.3	9.3	7	11.3	11.4	65.5	53.6	-	61.5	58.2	-	16.3
Peak D	5. 2031 NO-Bulla Hallic (See Exhibit 4)	• 95th Queue Length (ft)	51	298	295	23	380	378	106	126	-	151	222	-	-
		 Approach LOS (Delay) 		A (9.3)			B (11.2)		E (58.7)			E (59.5)		-
		• LOS	Α	Α	В	Α	В	В	Е	D	<	Е	Е	<	В
	C. 2031 Total Traffic (See Exhibit 6)	 Delay 	9.7	9.5	9.5	7.2	11.7	11.8	67.1	53.6	-	61.4	58.8	-	16.7
ال	5. 2031 TOTAL HAITIC (See EXHIBIT 6)	• 95th Queue Length (ft)	53	312	309	24	398	396	115	126	-	151	228	-	-
		 Approach LOS (Delay) 		A (9.6)			B (11.6)		E (59.6)			E (59.8)		-

Table 5: Level-of-Service Summary (cont.)

		Tubic of Level of Colvin			oup By Approach	ı
	Intersection / Timeframe	Roadway Conditions	> = Shared L	ane -= Non Cr	itical or Not Allo	wed Movement
			Eastbound	Westbound	Northbound	Southbound
2. Ogd	en Avenue at Linscott Ave/east site drive	TWSC - NB/SB Stop	LT TH RT	LT TH RT	LT TH RT	LT TH RT
		• LOS	В	В	> D <	> B <
	A. Existing Traffic (See Exhibit 3)	• Delay	11.2	13.0	- 33.3 -	- 13.1 -
	Landing Trainic (Occ Exhibit 5)	95th Queue Length (ft)	0	0	- 5 -	- 0 -
		 Approach LOS (Delay) 	B (11.2)	B (13.0)	D (33.3)	B (13.1)
		• LOS	В	В	> E <	> B <
	B. 2031 No-Build Traffic (See Exhibit 4)	• Delay	11.5	13.5	- 37.2 -	- B -
	B. 2001 No Balla Hallio (000 Exhibit 4)	• 95th Queue Length (ft)	0	0	- 5 -	- 0 -
AM		Approach LOS (Delay)	B (11.5)	B (13.5)	E (37.2)	B (13.5)
Peak		• LOS	В	В	> E <	> F <
	C. 2031 Total Traffic (See Exhibit 6)	• Delay	12.1	13.5	- 44.9 -	- 309.8 -
	o. 2001 Total Trainio (000 Exilibit 0)	• 95th Queue Length (ft)	5	0	- 5 -	- 143 -
		Approach LOS (Delay)	B (12.1)	B (13.5)	E (44.9)	F (309.8)
		• LOS	В	В	> E <	F - B
	D. 2031 Total Traffic W/ left turn lane (See	• Delay	12.1	13.5	- 44.9 -	431.3 - 14.4
	Exhibit 6)	• 95th Queue Length (ft)	5	0	- 5 -	88 - 8
		Approach LOS (Delay)	B (12.1)	B (13.5)	E (44.9)	F (199.7)
		• LOS	C	В	> F <	> C <
	A. Existing Traffic (See Exhibit 3)	• Delay	15.2	12.1	- 96.6 -	- 17.7 -
	- = =:::::::: (• 95th Queue Length (ft)	0	0	- 5 -	- 3 -
		Approach LOS (Delay)	C (15.2)	B (12.1)	F (96.6)	C (17.7)
		• LOS	C	B	> F <	> C <
	B. 2031 No-Build Traffic (See Exhibit 4)	• Delay	15.8	12.5	- 112.4 -	> 18.3 <
D14	,	• 95th Queue Length (ft)	0	0	- 5 -	- 3 -
PM		Approach LOS (Delay)	C (15.8)	B (12.5)	F (112.4)	C (18.3)
Peak		• LOS	C 17.2	B	> F < - 160.0 -	> F < - 1224.0 -
	C. 2031 Total Traffic (See Exhibit 6)	• Delay	8	12.5	- 160.0 - - 8 -	- 1224.0 - - 213 -
	·	• 95th Queue Length (ft)	~	•	•	
		Approach LOS (Delay) LOS	C (17.2)	B (12.5)	F (160)	F (1224)
	D. 2031 Total Traffic W/ left turn lane (See	• LOS • Delay	17.2	12.5		1515.5 - 20.6
	,	,	17.2	12.5	- 160.0 - - 8 -	1515.5 - 20.6 118 - 13
	Exhibit 6)	95th Queue Length (ft) Approach LOS (Delay)	*	_	•	
		 Approach LOS (Delay) 	C (17.2)	B (12.5)	F (160)	F (674.6)

Table 5: Level-of-Service Summary (cont.)

						Mo	veme	nt Gro	oup E	Зу Арр	oroac	h		
	Intersection / Timeframe	Roadway Conditions	> =	= Sha	red L	ane	- = N	on Cr	itical	or No	t Allo	owed N	loveme	nt
			Ea	stbou	nd	We	estbou	ınd	No	orthbo	und	So	uthbou	nd
2. Ogde	en Avenue at Linscott Ave/east site drive	TWSC - NB/SB Stop	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
		• LOS	В	•	-	В	-	-	>	В	<	Α	F	<
	A. Existing Traffic (See Exhibit 3)	 Delay 	12.7	-	-	11.6	-	-	-	13.7	-	-	125.9	-
	A. Existing Traine (See Exhibit 3)	 95th Queue Length (ft) 	3	-	-	15	-	-	-	0	-	5	38	-
		 Approach LOS (Delay) 	В	(12.7)			B (11.6)		B (13.7	')		F (125.9))
		• LOS	В	-	-	В	-	-	>	В	<	Α	F	<
	D 2024 No Build Troffic (See Eyhibit 4)	 Delay 	13.1	-	-	11.9	-	-	-	14.0	-	-	151.7	-
	B. 2031 No-Build Traffic (See Exhibit 4)	 95th Queue Length (ft) 	3	-	-	15	-	-	-	0	-	5	43	-
SAT		 Approach LOS (Delay) 	Е	(13.1)			B (11.9)		B (14.0))		F (151.7))
Peak		• LOS	В	-	-	В	-	-	>	В	<	Α	F	<
	C 2024 Total Troffic (See Exhibit 6)	 Delay 	14.1	-	-	12.0	-	-	-	14.1	-	-	825.8	-
	C. 2031 Total Traffic (See Exhibit 6)	 95th Queue Length (ft) 	5	-	-	15	-	-	-	0	-	5	228	-
		 Approach LOS (Delay) 	E	(14.1)			B (12.0)		B (14.1	l)		F (825.8))
		• LOS	В	-	-	В	-	-	>	В	<	F	-	С
	D. 2031 Total Traffic W/ left turn lane (See	• Delay	14.1	-	-	12.0	-	-	-	14.1	-	942.1	-	16.8
	Exhibit 6)	• 95th Queue Length (ft)	5	-	-	0	-	-	-	0	-	145	-	10
		Approach LOS (Delay)	Е	3 (14.1)			B (12.0)		B (14.1)		F (509.5)	

Table 5: Level-of-Service Summary (cont.)

		Table 6. Level of Gervie			oup By Approach	1
	Intersection / Timeframe	Roadway Conditions	> = Shared L	ane -= Non Cr	itical or Not Allo	wed Movement
		-	Eastbound	Westbound	Northbound	Southbound
3. Ogde	en Avenue at west site drive	TWSC - NB/SB Stop	LT TH RT	LT TH RT	LT TH RT	LT TH RT
		• LOS	В	В		> D <
	A. Existing Traffic (See Exhibit 3)	• Delay	11.3	13.2		- 32.3 -
	A. Existing Traffic (See Exhibit 3)	 95th Queue Length (ft) 	0	0		- 3 -
		 Approach LOS (Delay) 	B (11.3)	B (13.2)	-	D (32.3)
		• LOS	В	В		> E <
	B. 2031 No-Build Traffic (See Exhibit 4)	• Delay	11.6	13.6		- 36.2 -
	D. 2031 NO-Build Hairic (Gee Exhibit 4)	95th Queue Length (ft)	0	0		- 3 -
AM		 Approach LOS (Delay) 	B (11.6)	B (13.6)	-	E (36.2)
Peak		• LOS	В	В		> F <
	C. 2031 Total Traffic (See Exhibit 6)	• Delay	12.2	13.6		- 355.4 -
	C. 2001 Total Harric (Oce Exhibit of	• 95th Queue Length (ft)	5	0		- 150 -
		Approach LOS (Delay)	B (12.2)	B (13.6)	-	F (355.4)
		• LOS	В	В		F - B
	D. 2031 Total Traffic W/ left turn lane (See	• Delay	12.2 - 0.0	13.6 - 0.0	0.0	475.8 - 14.5
	Exhibit 6)	• 95th Queue Length (ft)	5 - 0	0 - 0	0	93 - 8
		Approach LOS (Delay)	B (12.2)	B (13.6)	-	F (230.3)
		• LOS	В	В	> F <	
	A. Existing Traffic (See Exhibit 3)	• Delay	14.9	12.0	- 63.3 -	
	Table (000 Exhibit 0)	• 95th Queue Length (ft)	0	0	- 3 -	
		Approach LOS (Delay)	B (14.9)	B (12.0)	F (63.3)	-
		• LOS	C	В	> F <	
	B. 2031 No-Build Traffic (See Exhibit 4)	• Delay	15.4	12.3	- 72.6 -	
	2. 2001 110 Dana Hamo (000 Exmon 1)	• 95th Queue Length (ft)	0	0	- 5 -	
PM		Approach LOS (Delay)	C (15.4)	B (12.3)	F (72.6)	-
Peak		•LOS	C	В	> F <	> F <
	C. 2031 Total Traffic (See Exhibit 6)	• Delay	16.7	12.4	- 98.3 -	- 1126.9 -
	(0.00 =	• 95th Queue Length (ft)	8	0	- 5 -	- 188 -
		Approach LOS (Delay)	C (16.7)	B (12.4)	F (98.3)	F (1126.9)
	D 0004 T 4 1 T 65 W/1 64 1 40	•LOS	C	B	> F <	F - C
	D. 2031 Total Traffic W/ left turn lane (See	• Delay	16.7 - 0.0	12.4 - 0.0	- 98.3 -	1361.4 - 19.5
	Exhibit 6)	• 95th Queue Length (ft)	8 - 0	0 - 0	- 5 -	118 - 8
		Approach LOS (Delay)	C (16.7)	B (12.4)	F (98.3)	F (702.2)

Table 5: Level-of-Service Summary (cont.)

						Mo	/emei	nt Gro	oup E	Зу Арр	roacl	ı		
	Intersection / Timeframe	Roadway Conditions	> =	= Sha	red L	ane	- = No	on Cr	itica	or No	t Allo	wed M	oveme	nt
			Eas	stbou	ınd	We	estbou	ınd	N	orthbou	ınd	So	uthbou	nd
3. Ogd	en Avenue at west site drive	TWSC - NB/SB Stop	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
		• LOS	В	-	•	В	-	-	>	В	<	>	F	'
	A. Existing Traffic (See Exhibit 3)	Delay	13.1	-	-	11.9	-	-	-	13.9	-	-	168.4	-
	A. Existing Trainic (See Exhibit 3)	 95th Queue Length (ft) 	0	-	-	0	-	-	-	0	-	-	13	-
		 Approach LOS (Delay) 	В	(13.1)		3 (11.9)		B (13.9))	F	(168.4)	
		• LOS	В	-	-	В	-	-	>	В	<	>	F	<
	D 2024 No Build Troffic (See Exhibit 4)	 Delay 	13.4	-	-	12.2	-	-	-	14.3	-	-	197.2	-
	B. 2031 No-Build Traffic (See Exhibit 4)	 95th Queue Length (ft) 	0	-	-	0	-	-	-	0	-	-	15	-
SAT		 Approach LOS (Delay) 	В	(13.4	.)	I	3 (12.2)		B (14.3))	F	(197.2)	
Peak		• LOS	В	-	-	В	-	-	>	В	<	>	F	<
	C 2024 Total Traffic (See Exhibit 6)	 Delay 	14.5	-	-	12.3	-	-	-	14.3	-	-	830.6	-
	C. 2031 Total Traffic (See Exhibit 6)	 95th Queue Length (ft) 	8	-	-	0	-	-	-	0	-	-	195	-
		 Approach LOS (Delay) 	В	(14.5)	ı	3 (12.3)		B (14.3))	F	(830.6)	
		• LOS	В	-	-	В	-	-	>	В	<	F	-	С
	D. 2031 Total Traffic W/ left turn lane (See	 Delay 	14.5	-	-	12.3	-	-	-	14.3	-	965.3	-	17.0
	Exhibit 6)	 95th Queue Length (ft) 	8	-	-	0	-	-	-	0	-	130	-	8
		Approach LOS (Delay)	В	(14.5)	l	3 (12.3)		B (14.3)		F	(545.5)	

Capacity analysis summary printouts are provided in Appendix H

ORD 2025-10692 Page 52 of 167

Proposed Mixed-Use Development 1250-1254 Ogden Avenue Downers Grove, Illinois

The following summarizes the findings of the Capacity Analyses.

Ogden Avenue at Saratoga Avenue

At the signalized intersection between Ogden Avenue and Saratoga Avenue, increased delay is expected to be negligible during all three peak hours due to the proposed development. No changes to the existing signal timing and phasing are required to accommodate the development traffic. Saratoga experiences typical delays associated with minor side streets intersecting major roadways such as Ogden Avenue. Overall intersection operations are expected to remain at LOS B during all three Peak Hours analyzed.

Ogden Avenue at Linscott Avenue/east site drive

Left turning movements are expected to experience "unacceptable" LOS F levels of delay during all three Peak Hours analyzed. In an effort to mitigate some of the impact we recommend marking the driveway to provide separate right and left turn lanes. This will allow vehicles making a right turn to operate at LOS B and LOS C while the left turn traffic awaits gaps in through traffic along Ogden Avenue. The maximum queue anticipated with the separate turn lanes is 145-feet on a Saturday Midday, which could negatively impact traffic exiting the drivethru lane. IDOT may look to limit movements at this location to ¾ (i.e., restricting left turns out).

Ogden Avenue at west site drive

Left turning movements are expected to experience "unacceptable" LOS F levels of delay during all three Peak Hours analyzed. In an effort to mitigate some of the impact we recommend marking the driveway to provide a separate right turn lane and shared thru-left turn lane. This will allow vehicles making a right turn to operate at LOS B and LOS C while the left turn and crossing traffic awaits gaps in through traffic along Ogden Avenue. The maximum queue anticipated with the separate turn lanes is 130-feet on a Saturday Midday, which could negatively impact traffic exiting the drive-thru lane. IDOT may look to limit movements at this location to ¾ (i.e., restricting left turns out).

Drive-Thru Queuing (Stacking) Review

A drive-thru queueing (stacking) review was conducted to determine whether the proposed storage space is adequate to accommodate the drive-through vehicles in accordance with the Village of Downers Grove. Based on the Site Plan prepared by cj architects, inc, the on-site vehicle storage space of the proposed drive-through window lane between the order station and pickup window is four (4) vehicles without disruption of site access or on-site circulation. An additional 9 vehicles along the north and east side of the proposed building can be stacked on site (for a total storage of 13 total vehicles), prior to impacting on-site circulation.

The Village of Downers Grove requires stacking of 8 vehicles per serving window with at least 3 spaces between the order station and the pickup window, per Section 28.7.130 of the Code of Ordinances. The proposed site plan meets these requirements.

ORD 2025-10692 Page 53 of 167

Proposed Mixed-Use Development 1250-1254 Ogden Avenue Downers Grove, Illinois

Part IV. Parking Evaluation

Parking Requirements

As the future tenant mix is unknown, it is our understanding that Village Staff will calculate the parking requirement for the proposed building as a Multi-Tenant shopping center having a requirement of 4 spaces per 1,000 gross square feet excluding any kitchen or landlord spaces. Thus, the proposed building has a net square footage of approximately 7,500 square feet requiring 30 parking spaces. The proposed site plan shows 31 spaces including two accessible spaces and meets this requirement.

Part IV. Recommendations and Conclusions

Analyses have been conducted under existing and future conditions to determine the impact from the proposed multitenant development on the study area intersections. The capacity analysis results indicate that the increase in project site-generated traffic has little to no effect upon the Peak Hour operations of the signalized intersection of Ogden Avenue and Saratoga Avenue to the east of the subject site. Traffic exiting the site is expected to experience longer than desirable delays (particularly left-turning vehicles) due to the volume of through traffic along Ogden Avenue in the site vicinity.

Operational recommendations to consider:

- Mark the site access drives to provide separate left and right turn lanes for exiting traffic. This may require
 coordination with the property owner to the east to accomplish.
- Add stop signs and stop bars for exiting site traffic.

Part V. Technical Addendum

The following Appendices were previously referenced. They provide technical support for our observations, findings and recommendations discussed in the text.

Appendices

- A. Photo Inventory
- B. 2024 Traffic Count Summaries
- C. Crash Summary Map
- D. CMAP 2050 Traffic Projections
- E. December 17, 2024, Site Plan
- F. ITE Trip Generation Manual Excerpts
- G. ITE Pass-By Tables
- H. Capacity Analysis Worksheets

5816.910 1250-1254 Ogden Avenue TIS-122424.docx

ORD 2025-10692 Page 54 of 167

Proposed Mixed-Use Development 1250-1254 Ogden Avenue Downers Grove, Illinois

TECHNICAL ADDENDUM

ORD 2025-10692 Page 55 of 167

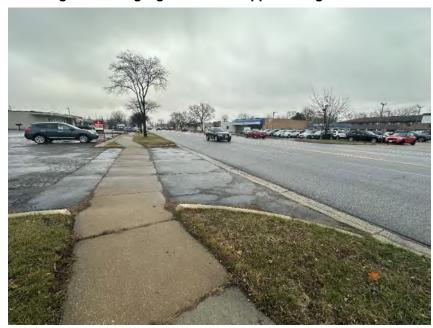
Proposed Mixed-Use Development 1250-1254 Ogden Avenue Downers Grove, Illinois

APPENDICES

- **A. PHOTO INVENTORY**
- **B. 2024 TRAFFIC COUNT SUMMARIES**
- C. CRASH SUMMARY MAP
- D. CMAP 2050 TRAFFIC PROJECTIONS
- E. DECEMBER 17TH, 2024, SITE PLAN
- F. ITE TRIP GENERATION MANUAL EXCERPTS
- **G. ITE PASS-BY TABLES**
- H. CAPACITY ANALYSIS WORKSHEETS

ORD 2025-10692 Page 56 of 167

Proposed Mixed-Use Development 1250-1254 Ogden Avenue Downers Grove, Illinois


APPENDIX A Photo Inventory

ORD 2025-10692 Page 57 of 167

Looking West along Ogden Avenue approaching West Site Drive

Looking East along Ogden Avenue approaching West Site Drive

Looking South across Ogden Avenue at Auto House Entrance

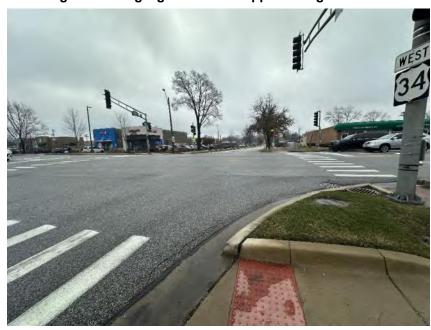
Looking North across Ogden Avenue at West Site Drive

ORD 2025-10692 Page 58 of 167

Looking East along Ogden Avenue approaching Auto House Entrance

Looking West along Ogden Avenue approaching Linscott Avenue

Looking East along Ogden Avenue approaching Linscott Avenue


Looking East along Ogden Avenue approaching East Site Drive

ORD 2025-10692 Page 59 of 167

Looking West along Ogden Avenue approaching East Site Drive

Looking South along Saratoga Avenue approaching Ogden Avenue

Looking East along Ogden Avenue approaching Saratoga Avenue

Looking West along Ogden Avenue approaching Saratoga Avenue

Page 60 of 167 ORD 2025-10692

Looking West along Ogden Avenue approaching Saratoga Avenue

Looking North along Saratoga Avenue approaching Ogden Avenue

Looking North along Saratoga Avenue approaching Ogden Avenue

Looking East along Ogden Avenue approaching Saratoga Avenue

ORD 2025-10692 Page 61 of 167

Proposed Mixed-Use Development 1250-1254 Ogden Avenue Downers Grove, Illinois

APPENDIX B2024 Traffic Count Summaries

Ogden Ave & Saratoga Ave 5816.910 - 1250-1254 Ogden TIS 7-9AM; 4-6PM GHA Mio

Gewalt Hamilton Associates Inc. 625 Forest Edge Drive

Vernon Hills, Illinois, United States 60061 (847) 478-9700 poster@gha-engineers.com

Count Name: Ogden Ave & Saratoga Ave Site Code: Start Date: 12/05/2024 Page No: 1

Start Time			Saratoga Ave					Ogden Ave Westbound	J				Saratoga Ave Northbound					Ogden Ave Eastbound			
Start Time	U-Turn	Left	Thru	Right	App. Total	U-Turn	Left	Thru	Right	App. Total	U-Turn	Left	Thru	Right	App. Total	U-Turn	Left	Thru	Right	App. Total	Int. Total
7:00 AM	0	6	. 3	16	25	0	12	163	3	178	0	14	2	7	23	0	8	211	10	229	455
7:15 AM	0	3	6	11	20	0	16	201	6	223	0	17	2	15	34	0	12	310	14	336	613
7:30 AM	0	7	5	16	28	0	18	246	4	268	0	18	4	21	43	0	10	336	15	361	700
7:45 AM	0	3	3	16	22	0	16	230	3	249	0	42	4	21	67	0	15	369	13	397	735
Hourly Total	0	19	17	59	95	0	62	840	16	918	0	91	12	64	167	0	45	1226	52	1323	2503
8:00 AM	0	9	11	8	28	0	33	240	1	274	0	36	11	22	69	0	31	343	40	414	785
8:15 AM	0	12	9	13	34	0	31	265	12	308	0	39	17	29	85	0	24	332	11	367	794
8:30 AM	0	16	8	21	45	1	12	262	7	282	0	16	4	13	33	0	16	316	7	339	699
8:45 AM	0	11	5	8	24	0	17	272	6	295	0	9	8	9	26	0	19	284	15	318	663
Hourly Total	0	48	33	50	131	1	93	1039	26	1159	0	100	40	73	213	0	90	1275	73	1438	2941
*** BREAK ***	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-
4:00 PM	0	12	9	19	40	0	15	355	14	384	0	17	13	8	38	0	24	271	5	300	762
4:15 PM	0	22	14	21	57	0	18	351	11	380	0	21	14	20	55	0	25	295	7	327	819
4:30 PM	0	20	11	24	55	0	21	357	11	389	0	18	18	10	46	0	30	282	11	323	813
4:45 PM	0	14	10	20	44	0	21	392	3	416	0	13	12	13	38	0	28	267	11	306	804
Hourly Total	0	68	44	84	196	0	75	1455	39	1569	0	69	57	51	177	0	107	1115	34	1256	3198
5:00 PM	0	27	14	32	73	0	10	322	15	347	0	16	13	13	42	0	34	281	10	325	787
5:15 PM	0	18	12	23	53	0	17	447	8	472	0	9	6	15	30	0	29	262	9	300	855
5:30 PM	0	25	13	28	66	0	18	344	10	372	0	11	9	20	40	0	25	268	18	311	789
5:45 PM	0	16	12	23	51	0	29	309	15	353	0	18	15	19	52	0	26	237	15	278	734
Hourly Total	0	86	51	106	243	0	74	1422	48	1544	0	54	43	67	164	0	114	1048	52	1214	3165
Grand Total	0	221	145	299	665	1	304	4756	129	5190	0	314	152	255	721	0	356	4664	211	5231	11807
Approach %	0.0	33.2	21.8	45.0	-	0.0	5.9	91.6	2.5	-	0.0	43.6	21.1	35.4	-	0.0	6.8	89.2	4.0	-	-
Total %	0.0	1.9	1.2	2.5	5.6	0.0	2.6	40.3	1.1	44.0	0.0	2.7	1.3	2.2	6.1	0.0	3.0	39.5	1.8	44.3	-
Lights	0	220	145	296	661	1	299	4675	128	5103	0	300	152	246	698	0	353	4561	211	5125	11587
% Lights		99.5	100.0	99.0	99.4	100.0	98.4	98.3	99.2	98.3	-	95.5	100.0	96.5	96.8	-	99.2	97.8	100.0	98.0	98.1
Mediums	0	0	0	3	3	0	5	69	1	75	0	14	0	9	23	0	2	83	0	85	186
% Mediums	-	0.0	0.0	1.0	0.5	0.0	1.6	1.5	0.8	1.4		4.5	0.0	3.5	3.2	-	0.6	1.8	0.0	1.6	1.6
Articulated Trucks	0	1	0	0	1	0	0	12	0	12	0	0	0	0	0	0	1	20	0	21	34
% Articulated Trucks	-	0.5	0.0	0.0	0.2	0.0	0.0	0.3	0.0	0.2		0.0	0.0	0.0	0.0	-	0.3	0.4	0.0	0.4	0.3

Gewalt Hamilton Associates Inc. 625 Forest Edge Drive

Vernon Hills, Illinois, United States 60061 (847) 478-9700 poster@gha-engineers.com

Count Name: Ogden Ave & Saratoga Ave Site Code: Start Date: 12/07/2024 Page No: 1

Ogden Ave & Saratoga Ave 5816.910 - 1250-1254 Ogden TIS 11 AM-1 PM GHA Mio

			Saratoga Ave	e				Ogden Ave					Saratoga Ave	Э				Ogden Ave			İ
Start Time			Southbound					Westbound					Northbound					Eastbound			ĺ
Start Time	U-Turn	Left	Thru	Right	App. Total	U-Turn	Left	Thru	Right	App. Total	U-Turn	Left	Thru	Right	App. Total	U-Turn	Left	Thru	Right	App. Total	Int. Total
11:00 AM	0	27	5	26	58	0	10	280	13	303	0	9	7	11	27	0	28	270	9	307	695
11:15 AM	0	22	15	19	56	0	11	262	18	291	0	14	9	11	34	0	27	279	6	312	693
11:30 AM	0	25	12	23	60	0	15	281	16	312	0	13	10	12	35	0	30	260	16	306	713
11:45 AM	0	24	5	25	54	0	12	282	19	313	0	16	9	14	39	0	29	275	11	315	721
Hourly Total	0	98	37	93	228	0	48	1105	66	1219	0	52	35	48	135	0	114	1084	42	1240	2822
12:00 PM	0	15	13	30	58	0	13	342	16	371	0	26	9	11	46	0	42	267	5	314	789
12:15 PM	0	24	10	21	55	0	18	301	5	324	0	13	11	8	32	0	46	308	11	365	776
12:30 PM	0	25	7	19	51	0	16	278	18	312	0	12	11	11	34	0	20	252	8	280	677
12:45 PM	0	26	17	25	68	0	12	292	10	314	0	11	11	11	33	0	28	260	9	297	712
Hourly Total	0	90	47	95	232	0	59	1213	49	1321	0	62	42	41	145	0	136	1087	33	1256	2954
Grand Total	0	188	84	188	460	0	107	2318	115	2540	0	114	77	89	280	0	250	2171	75	2496	5776
Approach %	0.0	40.9	18.3	40.9	-	0.0	4.2	91.3	4.5	-	0.0	40.7	27.5	31.8	-	0.0	10.0	87.0	3.0	-	-
Total %	0.0	3.3	1.5	3.3	8.0	0.0	1.9	40.1	2.0	44.0	0.0	2.0	1.3	1.5	4.8	0.0	4.3	37.6	1.3	43.2	-
Lights	0	187	84	188	459	0	106	2298	113	2517	0	113	77	88	278	0	248	2154	75	2477	5731
% Lights	-	99.5	100.0	100.0	99.8	-	99.1	99.1	98.3	99.1	-	99.1	100.0	98.9	99.3	-	99.2	99.2	100.0	99.2	99.2
Mediums	0	0	0	0	0	0	1	17	2	20	0	0	0	1	1	0	2	15	0	17	38
% Mediums	-	0.0	0.0	0.0	0.0	-	0.9	0.7	1.7	0.8	-	0.0	0.0	1.1	0.4	-	0.8	0.7	0.0	0.7	0.7
Articulated Trucks	0	1	0	0	1	0	0	3	0	3	0	1	0	0	1	0	0	2	0	2	7
% Articulated Trucks	-	0.5	0.0	0.0	0.2	-	0.0	0.1	0.0	0.1	-	0.9	0.0	0.0	0.4	-	0.0	0.1	0.0	0.1	0.1

Ogden Ave & West Site Drive 5816.910 - 1250-1254 Ogden TIS 7-9AM; 4-6PM GHA Mio

Gewalt Hamilton Associates Inc. 625 Forest Edge Drive

Vernon Hills, Illinois, United States 60061 (847) 478-9700 poster@gha-engineers.com

Count Name: Ogden Ave & West Site Drive Site Code: Start Date: 12/05/2024 Page No: 1

Start Time			est Site Acce Southbound					Ogden Ave Westbound					o House Acc Northbound					Ogden Ave Eastbound			
	U-Turn	Left	Thru	Right	App. Total	U-Turn	Left	Thru	Right	App. Total	U-Turn	Left	Thru	Right	App. Total	U-Turn	Left	Thru	Right	App. Total	Int. Total
7:00 AM	0	0	0	0	0	0	0	194	0	194	0	0	0	0	0	0	0	226	0	226	420
7:15 AM	0	0	0	0	. 0	0	0	223	0	223	0	0	0	0	0	0	0	299	0	299	522
7:30 AM	0	0	0	0	0	0	0	282	1	283	0	0	0	0	0	0	0	324	0	324	607
7:45 AM	0	0	0	0	0	0	0	288	0	288	0	0	0	0	0	0	1	323	0	324	612
Hourly Total	0	0	0	0	0	0	0	987	1	988	0	0	0	0	0	0	1	1172	0	1173	2161
8:00 AM	0	0	0	0	0	0	0	279	0	279	0	0	0	0	0	0	1	405	0	406	685
8:15 AM	0	0	0	2	2	0	0	305	0	305	0	0	0	0	0	0	1	384	0	385	692
8:30 AM	0	1	0	1	2	0	0	285	0	285	0	0	0	0	0	0	1	343	0	344	631
8:45 AM	0	0	0	0	0	0	0	281	0	281	0	0	0	0	0	0	0	307	0	307	588
Hourly Total	0	1	0	3	4	0	0	1150	0	1150	0	0	0	0	0	0	3	1439	0	1442	2596
*** BREAK ***	-	-			-	-	-		-	-	-	-	-		-	-	-		-	-	-
4:00 PM	0	0	0	0	0	0	1	394	0	395	0	0	0	1	. 1	0	0	310	0	310	706
4:15 PM	0	0	0	0	0	0	1	426	0	427	0	0	0	1	. 1	0	0	347	1	348	776
4:30 PM	0	0	0	0	0	0	0	399	0	399	0	1	0	0	. 1	0	0	345	0	345	745
4:45 PM	0	0	0	0	0	0	1	471	1	473	0	0	0	0	0	0	0	305	0	305	778
Hourly Total	0	0	0	0	0	0	3	1690	11	1694	0	11	0	2	3	0	0	1307	1	1308	3005
5:00 PM	0	0	0	0	0	0	0	376	0	376	0	0	0	2	2	0	0	321	0	321	699
5:15 PM	0	0	0	0	0	0	0	481	1	482	0	0	0	0	0	0	0	298	0	298	780
5:30 PM	0	1	0	2	3	0	0	398	1	399	0	0	0	0	0	0	0	319	0	319	721
5:45 PM	0	0	0	0	0	0	0	353	0	353	0	0	0	1	1	0	0	261	0	261	615
Hourly Total	0	1	0	2	3	0	0	1608	2	1610	0	0	0	3	3	0	0	1199	0	1199	2815
Grand Total	0	2	0	5	. 7	0	3	5435	4	5442	0	1	0	5	6	0	4	5117	1	5122	10577
Approach %	0.0	28.6	0.0	71.4	-	0.0	0.1	99.9	0.1	-	0.0	16.7	0.0	83.3	-	0.0	0.1	99.9	0.0	-	-
Total %	0.0	0.0	0.0	0.0	0.1	0.0	0.0	51.4	0.0	51.5	0.0	0.0	0.0	0.0	0.1	0.0	0.0	48.4	0.0	48.4	-
Lights	0	2	0	5	. 7	0	3	5334	3	5340	0	11	0	. 5	6	0	4	5012	1	5017	10370
% Lights	-	100.0	-	100.0	100.0	-	100.0	98.1	75.0	98.1	-	100.0	-	100.0	100.0	-	100.0	97.9	100.0	98.0	98.0
Mediums	0	0	0	0	0	0	0	91	1	92	0	0	0	0	0	0	0	85	0	85	177
% Mediums	-	0.0	-	0.0	0.0	-	0.0	1.7	25.0	1.7	-	0.0	-	0.0	0.0	-	0.0	1.7	0.0	1.7	1.7
Articulated Trucks	0	0	0	0	0	0	0	10	0	10	0	0	0	0	0	0	0	20	0	20	30
% Articulated Trucks	-	0.0	-	0.0	0.0	-	0.0	0.2	0.0	0.2	-	0.0	-	0.0	0.0	-	0.0	0.4	0.0	0.4	0.3

Ogden Ave & West Site Drive 5816.910 - 1250-1254 Ogden TIS 11 AM-1 PM GHA Mio

Gewalt Hamilton Associates Inc. 625 Forest Edge Drive

Vernon Hills, Illinois, United States 60061 (847) 478-9700 poster@gha-engineers.com

Count Name: Ogden Ave & West Site Drive Site Code: Start Date: 12/07/2024 Page No: 1

		W	est Site Acce	SS				Ogden Ave				Aut	o House Acc	ess				Ogden Ave			1
Otant Time			Southbound					Westbound					Northbound					Eastbound			ĺ
Start Time	U-Turn	Left	Thru	Right	App. Total	U-Turn	Left	Thru	Right	App. Total	U-Turn	Left	Thru	Right	App. Total	U-Turn	Left	Thru	Right	App. Total	Int. Total
11:00 AM	0	0	0	1	1	0	1	315	0	316	0	0	0	2	2	0	0	330	0	330	649
11:15 AM	0	1	0	0	1	0	1	281	1	283	0	0	0	0	0	0	1	360	0	361	645
11:30 AM	0	2	0	0	2	0	0	331	0	331	0	1	1	0	2	0	1	292	0	293	628
11:45 AM	0	1	0	0	1	0	1	349	0	350	0	0	0	0	0	0	0	333	1	334	685
Hourly Total	0	4	0	1	5	0	3	1276	1	1280	0	1	1	2	4	0	2	1315	1	1318	2607
12:00 PM	0	2	0	0	2	1	0	366	0	367	0	0	0	0	0	0	0	307	0	307	676
12:15 PM	0	0	0	1	1	0	0	356	0	356	0	0	0	0	0	0	0	355	0	355	712
12:30 PM	0	1	0	0	1	0	0	327	3	330	0	0	0	1	1	0	1	261	0	262	594
12:45 PM	0	1	0	3	4	0	0	326	0	326	0	0	0	1	1	0	0	288	0	288	619
Hourly Total	0	4	0	4	8	1	0	1375	3	1379	0	0	0	2	2	0	1	1211	0	1212	2601
Grand Total	0	8	0	5	13	1	3	2651	4	2659	0	1	1	4	6	0	3	2526	1	2530	5208
Approach %	0.0	61.5	0.0	38.5	-	0.0	0.1	99.7	0.2	-	0.0	16.7	16.7	66.7	-	0.0	0.1	99.8	0.0	-	-
Total %	0.0	0.2	0.0	0.1	0.2	0.0	0.1	50.9	0.1	51.1	0.0	0.0	0.0	0.1	0.1	0.0	0.1	48.5	0.0	48.6	-
Lights	0	8	0	5	13	1	3	2631	4	2639	0	1	0	4	5	0	3	2509	1	2513	5170
% Lights	-	100.0	-	100.0	100.0	100.0	100.0	99.2	100.0	99.2	-	100.0	0.0	100.0	83.3	-	100.0	99.3	100.0	99.3	99.3
Mediums	0	0	0	0	0	0	0	17	0	17	0	0	1	0	1	0	0	15	0	15	33
% Mediums	-	0.0	-	0.0	0.0	0.0	0.0	0.6	0.0	0.6	-	0.0	100.0	0.0	16.7	-	0.0	0.6	0.0	0.6	0.6
Articulated Trucks	0	0	0	0	0	0	0	3	0	3	0	0	0	0	0	0	0	2	0	2	5
% Articulated Trucks	-	0.0	-	0.0	0.0	0.0	0.0	0.1	0.0	0.1	-	0.0	0.0	0.0	0.0	-	0.0	0.1	0.0	0.1	0.1

Ogden Ave & Linscott Ave/E Site Drive - TMC

Thu Dec 5, 2024

Full Length (7 AM-9 AM, 4 PM-6 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements

ID: 1253426, Location: 41.808368, -88.016023

Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Direction Time 2024-12-05 7:00AM	South R 0	iwestbou BR					Westbou	ınd					NT (1.1					
	_	BR	DI				VV CSLDUL	IIIU					Northbou	па				
2024-12-05 7:00AM	0		BL	HL	U	App	HR	BR	T	L	U	App	R	BR	BL	L	U	App
		0	0	0	0	0	0	0	195	0	0	195	1	0	0	1	0	2
7:15AM	0	0	0	0	0	0	5	1	222	0	0	228	2	0	0	0	0	2
7:30AM	0	0	0	0	0	0	0	0	281	0	0	281	1	0	0	1	0	2
7:45AM	0	0	0	0	0	0	1	0	282	0	0	283	1	0	0	0	0	1
Hourly Total	0	0	0	0	0	0	6	1	980	0	0	987	5	0	0	2	0	7
8:00AM	0	0	0	0	0	0	3	2	277	0	0	282	2	0	0	0	0	2
8:15AM	0	0	0	0	0	0	3	2	308	0	0	313	2	0	0	0	0	2
8:30AM	0	0	0	1	0	1	6	2	283	2	0	293	1	0	0	0	0	1
8:45AM	0	1	0	1	0	2	1	1	279	0	0	281	0	0	0	0	0	0
Hourly Total	0	1	0	2	0	3	13	7	1147	2	0	1169	5	0	0	0	0	5
4:00PM	0	0	0	0	0	0	3	0	382	0	0	385	1	0	0	0	0	1
4:15PM	0	0	0	0	0	0	1	0	406	1	0	408	1	0	0	0	0	1
4:30PM	0	0	0	0	0	0	1	0	398	0	0	399	2	0	0	1	0	3
4:45PM	0	0	0	0	0	0	0	0	467	1	0	468	0	0	0	0	0	0
Hourly Total	0	0	0	0	0	0	5	0	1653	2	0	1660	4	0	0	1	0	5
5:00PM	0	0	0	0	0	0	0	0	372	0	1	373	1	0	0	0	0	1
5:15PM	0	0	0	0	0	0	0	0	483	0	0	483	0	0	0	0	0	0
5:30PM	0	0	0	1	0	1	0	0	403	0	0	403	0	0	0	1	0	1
5:45PM	0	0	0	2	0	2	0	0	346	0	0	346	0	0	0	1	0	1
Hourly Total	0	0	0	3	0	3	0	0	1604	0	1	1605	1	0	0	2	0	3
Total	0	1	0	5	0	6	24	8	5384	4	1	5421	15	0	0	5	0	20
% Approach	0%	16.7%	0%	83.3%	0%	-	0.4%	0.1%	99.3%	0.1%	0%	-	75.0%	0%	0%	25.0%	0%	_
% Total	0%	0%	0%	0%	0%	0.1%	0.2%	0.1%	50.8%	0%	0%	51.1%	0.1%	0%	0%	0%	0%	0.2%
Lights	0	1	0	5	0	6	24	8	5294	4	1	5331	13	0	0	5	0	18
% Lights	0%	100%	0%	100%	0%	100%	100%	100%	98.3%	100%	100%	98.3%	86.7%	0%	0%	100%	0%	90.0%
Articulated Trucks	0	0	0	0	0	0	0	0	11	0	0	11	0	0	0	0	0	0
% Articulated Trucks	0%	0%	0%	0%	0%	0%	0%	0%	0.2%	0%	0%	0.2%	0%	0%	0%	0%	0%	0%
Buses and Single-Unit Trucks	0	0	0	0	0	0	0	0	79	0	0	79	2	0	0	0	0	2
% Buses and Single-Unit Trucks	0%	0%	0%	0%	0%	0%	0%	0%	1.5%	0%	0%	1.5%	13.3%	0%	0%	0%	0%	10.0%

^{*}BL: Bear left, BR: Bear right, HL: Hard left, HR: Hard right, L: Left, R: Right, T: Thru, U: U-Turn

Ogden Ave & Linscott Ave/E Site Drive - TMC

Thu Dec 5, 2024

Full Length (7 AM-9 AM, 4 PM-6 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements

ID: 1253426, Location: 41.808368, -88.016023

Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Leg	Ngden Ave	!					OW Access	6					
Direction	Eastbound						Southeastbo	ound					
Time	R	T	BL	HL	U	App	HR	BR	BL	L	U	App	Int
2024-12-05 7:00AM	0	228	2	0	0	230	1	0	0	0	0	1	428
7:15AM	0	308	0	0	0	308	0	0	0	0	0	0	538
7:30AM	0	351	1	1	0	353	4	0	0	0	0	4	640
7:45AM	0	363	0	0	0	363	2	0	0	0	0	2	649
Hourly Total	0	1250	3	1	0	1254	7	0	0	0	0	7	2255
8:00AM	0	406	0	2	0	408	0	0	0	0	0	0	692
8:15AM	2	354	0	3	0	359	0	0	0	0	0	0	674
8:30AM	0	339	0	1	0	340	2	0	1	0	0	3	
8:45AM	0	334	2	3	0	339	1	0	2	0	0	3	625
Hourly Total	2	1433	2	9	0	1446	3	0	3	0	0	6	2629
4:00PM	2	300	0	1	0	303	3	0	0	0	0	3	692
4:15PM	0	347	0	0	0	347	1	0	0	0	0	1	757
4:30PM	0	299	0	2	0	301	0	0	0	0	0	0	703
4:45PM	0	310	0	0	0	310	1	0	0	0	0	1	779
Hourly Total	2	1256	0	3	0	1261	5	0	0	0	0	5	2931
5:00PM	1	302	0	1	0	304	3	0	0	0	0	3	681
5:15PM	1	294	0	1	0	296	2	0	0	0	0	2	781
5:30PM	0	320	0	0	0	320	1	0	0	0	0	1	726
5:45PM	0	249	0	0	1	250	1	0	0	0	0	1	600
Hourly Total	2	1165	0	2	1	1170	7	0	0	0	0	7	2788
Total	6	5104	5	15	1	5131	22	0	3	0	0	25	10603
% Approach	0.1%	99.5%	0.1%	0.3%	0%	-	88.0%	0%	12.0%	0%	0%	-	-
% Total	0.1%	48.1%	0%	0.1%	0%	48.4%	0.2%	0%	0%	0%	0%	0.2%	-
Lights	6	5005	5	15	1	5032	21	0	3	0	0	24	10411
% Lights	100%	98.1%	100%	100%	100%	98.1%	95.5%	0%	100%	0%	0%	96.0%	98.2%
Articulated Trucks	0	13	0	0	0	13	0	0	0	0	0	0	24
% Articulated Trucks	0%	0.3%	0%	0%	0%	0.3%	0%	0%	0%	0%	0%	0%	0.2%
Buses and Single-Unit Trucks	0	86	0	0	0	86	1	0	0	0	0	1	168
% Buses and Single-Unit Trucks	0%	1.7%	0%	0%	0%	1.7%	4.5%	0%	0%	0%	0%	4.0%	1.6%

^{*}BL: Bear left, BR: Bear right, HL: Hard left, HR: Hard right, L: Left, R: Right, T: Thru, U: U-Turn

Ogden Ave & Linscott/E Site Drive - TMC

Sat Dec 7, 2024

Full Length (11 AM-1 PM)

All Classes (Lights, Articulated Trucks, Buses and Single-Unit Trucks)

All Movements

ID: 1253429, Location: 41.808386, -88.01608

Provided by: Gewalt Hamilton Associates Inc. 625 Forest Edge Drive, Vernon Hills, IL, 60061, US

Leg	NE A	ccess					Ogden A	ve					Linscott .	Ave				
Direction	South	ıwestbou	nd				Westbou	ınd					Northbou	ınd				
Time	R	BR	BL	HL	U	App	HR	BR	T	L	U	App	R	BR	BL	L	U	App
2024-12-07 11:00AM	0	0	0	3	0	3	5	0	311	1	0	317	2	0	0	0	0	2
11:15AM	0	1	0	1	0	2	8	1	278	1	0	288	2	0	0	1	0	3
11:30AM	0	2	0	0	0	2	7	1	322	0	0	330	2	0	0	0	0	2
11:45AM	0	2	0	0	0	2	7	0	342	0	0	349	1	0	0	0	0	1
Hourly Total	0	5	0	4	0	9	27	2	1253	2	0	1284	7	0	0	1	0	8
12:00PM	0	1	0	2	0	3	5	1	367	0	0	373	0	0	0	0	0	0
12:15PM	0	3	0	9	0	12	4	0	340	0	0	344	1	0	0	0	0	1
12:30PM	0	1	0	1	0	2	1	0	330	0	0	331	0	0	0	0	0	0
12:45PM	0	2	0	2	0	4	5	0	323	0	0	328	0	0	0	0	0	0
Hourly Total	0	7	0	14	0	21	15	1	1360	0	0	1376	1	0	0	0	0	1
Total	0	12	0	18	0	30	42	3	2613	2	0	2660	8	0	0	1	0	9
% Approach	0%	40.0%	0%	60.0%	0%	-	1.6%	0.1%	98.2%	0.1%	0%	-	88.9%	0%	0%	11.1%	0%	-
% Total	0%	0.2%	0%	0.3%	0%	0.6%	0.8%	0.1%	50.2%	0%	0%	51.1%	0.2%	0%	0%	0%	0%	0.2%
Lights	0	12	0	18	0	30	42	3	2592	2	0	2639	8	0	0	1	0	9
% Lights	0%	100%	0%	100%	0%	100%	100%	100%	99.2%	100%	0%	99.2%	100%	0%	0%	100%	0%	100%
Articulated Trucks	0	0	0	0	0	0	0	0	4	0	0	4	0	0	0	0	0	0
% Articulated Trucks	0%	0%	0%	0%	0%	0%	0%	0%	0.2%	0%	0%	0.2%	0%	0%	0%	0%	0%	0%
Buses and Single-Unit Trucks	0	0	0	0	0	0	0	0	17	0	0	17	0	0	0	0	0	0
% Buses and Single-Unit Trucks	0%	0%	0%	0%	0%	0%	0%	0%	0.7%	0%	0%	0.6%	0%	0%	0%	0%	0%	0%

^{*}BL: Bear left, BR: Bear right, HL: Hard left, HR: Hard right, L: Left, R: Right, T: Thru, U: U-Turn


ORD 2025-10692 Page 69 of 167

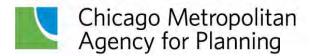
Proposed Mixed-Use Development 1250-1254 Ogden Avenue Downers Grove, Illinois

APPENDIX C *Crash Summary Map*

ORD 2025-10692 Page 70 of 167

Appendix C - IDOT Crash Data 2019-23

1 inch = 130
Feet


Proposed Mxed-Use Development 1250-1254 Ogden Avenue Downers Grove, IL ORD 2025-10692 Page 71 of 167

Proposed Mixed-Use Development 1250-1254 Ogden Avenue Downers Grove, Illinois

APPENDIX DCMAP 2050 Traffic Projections

Appendix D

433 West Van Buren Street, Suite 450 Chicago, IL 60607 cmap.illinois.gov | 312-454-0400

December 16, 2024

David Westergreen, E. I. Transportation Engineer Gewalt Hamilton Associates 625 Forest Edge Drive Vernon Hills, IL 600061

Subject: Ogden Avenue and Saratoga Avenue IDOT

Dear Mr. Westergreen:

In response to a request made on your behalf and dated December 13, 2024, we have developed year 2050 average daily traffic (ADT) projections for the subject location.

ROAD SEGMENT	Current ADT (2023)	Year 2050 ADT
Ogden Ave west of Saratoga Ave	30,000	34,200

Traffic projections are developed using existing ADT data provided in the request letter and the results from the June 2024 CMAP Travel Demand Analysis. The regional travel model uses CMAP 2050 socioeconomic projections and assumes the implementation of the ON TO 2050 Comprehensive Regional Plan for the Northeastern Illinois area. The provision of this data in support of your request does not constitute a CMAP endorsement of the proposed development or any subsequent developments.

If you have any questions, please call me at (312) 386-8806 or email me at jrodriguez@cmap.illinois.gov

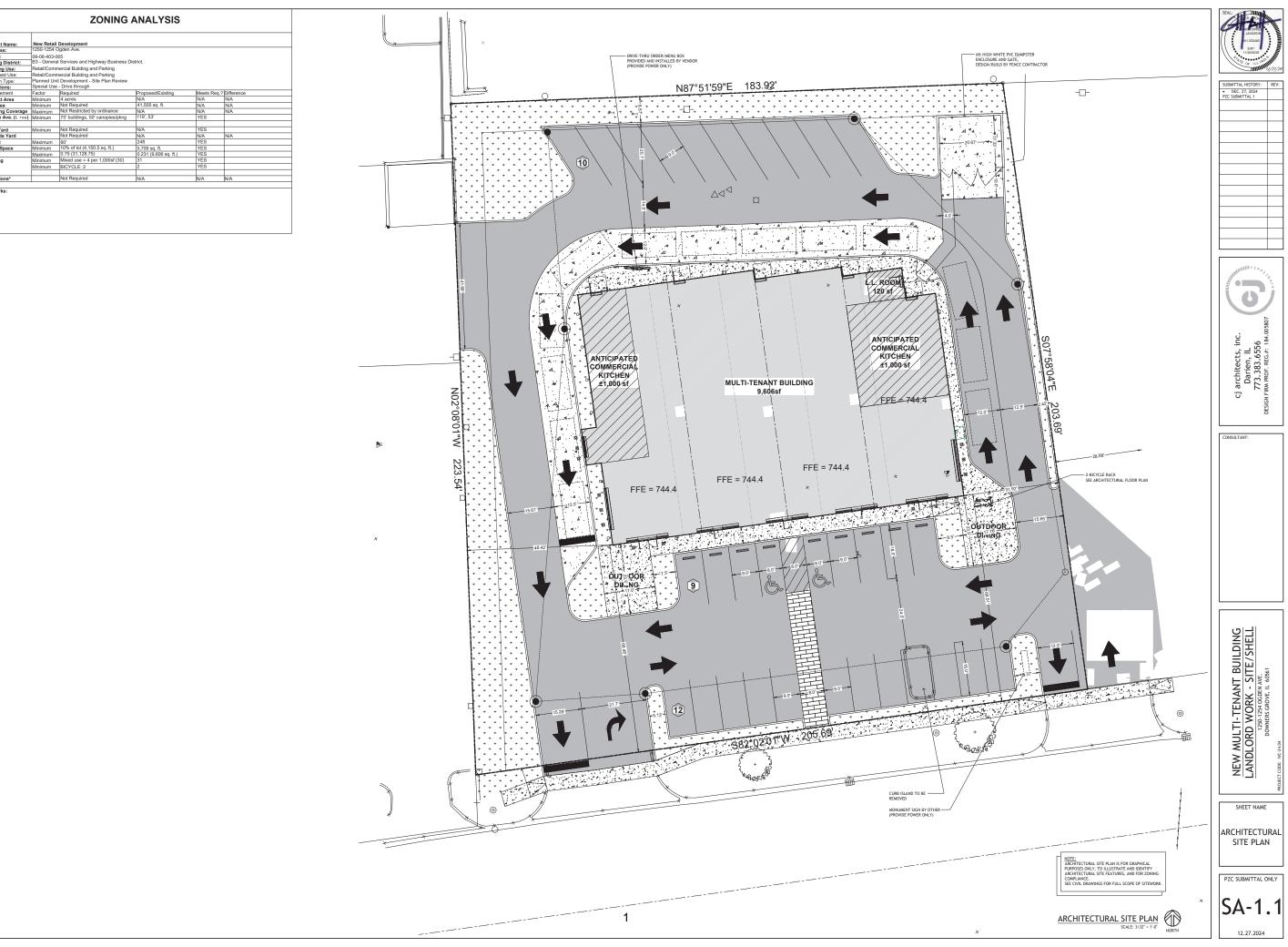
Jose Rodriguez, PTP, AICP

2 Ry

Senior Planner, Research & Analysis

cc: Rios (IDOT)

2024_TrafficForecasts\DownersGrove\du-59-24\du-59-24.docx


ORD 2025-10692 Page 73 of 167

Proposed Mixed-Use Development 1250-1254 Ogden Avenue Downers Grove, Illinois

APPENDIX E December 17th, 2024 Site Plan

ORD 2025-10692 _

Page 74 of 167

Appendix E

ORD 2025-10692 Page 75 of 167

Proposed Mixed-Use Development 1250-1254 Ogden Avenue Downers Grove, Illinois

APPENDIX F ITE Trip Generation Manual Excerpts

ORD 2025-10692 Page 76 of 167

Land Use: 720 **Medical-Dental Office Building**

Description

A medical-dental office building is a facility that provides diagnoses and outpatient care on a routine basis but is unable to provide prolonged in-house medical and surgical care. One or more private physicians or dentists generally operate this type of facility. General office building (Land Use 710) and clinic (Land Use 630) are related uses.

Land Use Subcategory

Analysis of medical-dental office building data found that trip generation rates are measurably different for sites located within or adjacent to a hospital campus and sites that are stand-alone. Data plots are presented for these two land use subcategories.

Additional Data

The technical appendices provide supporting information on time-of-day distributions for this land use. The appendices can be accessed through either the ITETripGen web app or the trip generation resource page on the ITE website (https://www.ite.org/technical-resources/topics/tripand-parking-generation/).

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in Alberta (CAN), California, Connecticut, Kentucky, Maryland, Minnesota, New Jersey, New York, Ohio, Oregon, Pennsylvania, South Dakota, Texas, Virginia, Washington, and Wisconsin.

Source Numbers

104, 109, 120, 157, 184, 209, 211, 253, 287, 294, 295, 304, 357, 384, 404, 407, 423, 444, 509, 601, 715, 867, 879, 901, 902, 908, 959, 972

ORD 2025-10692 Page 77 of 167

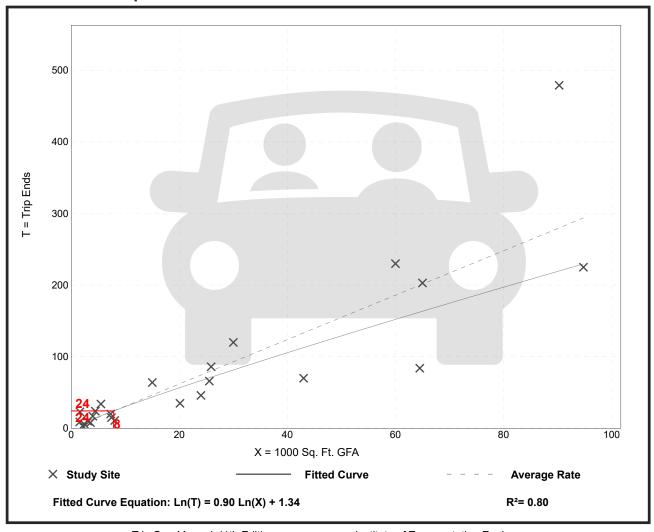
Medical-Dental Office Building - Stand-Alone (720)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban


Number of Studies: 24 Avg. 1000 Sq. Ft. GFA: 25

Directional Distribution: 79% entering, 21% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
3.10	0.87 - 14.30	1.49

Data Plot and Equation

ORD 2025-10692 Page 78 of 167

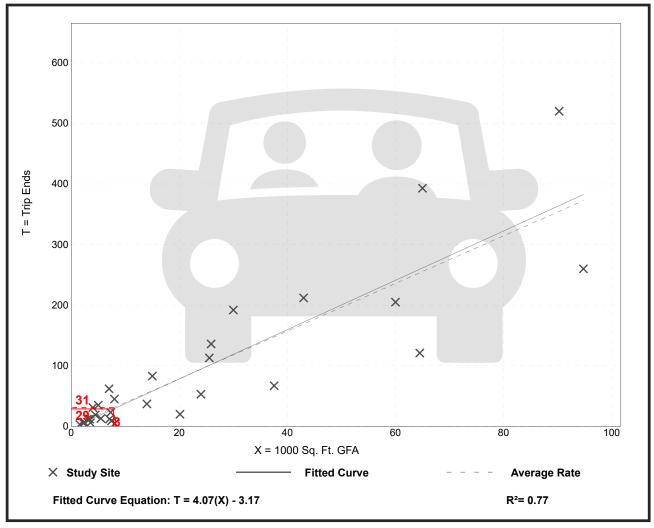
Medical-Dental Office Building - Stand-Alone (720)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban


Number of Studies: 30 Avg. 1000 Sq. Ft. GFA: 23

Directional Distribution: 30% entering, 70% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
3.93	0.62 - 8.86	1.86

Data Plot and Equation

ORD 2025-10692 Page 79 of 167

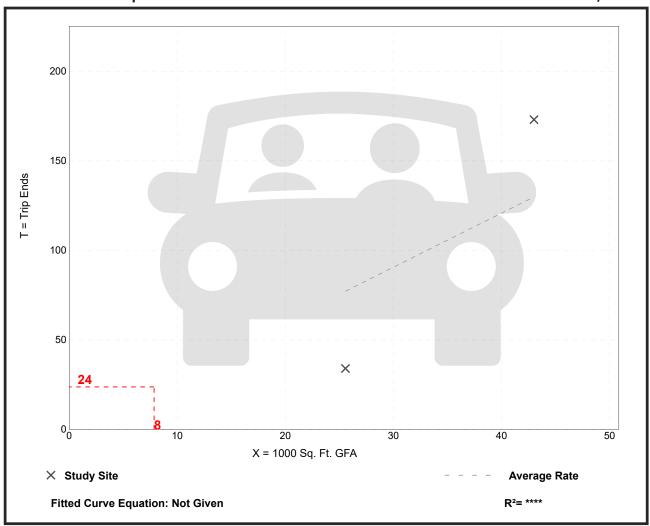
Medical-Dental Office Building - Stand-Alone (720)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 2 Avg. 1000 Sq. Ft. GFA: 34


Directional Distribution: 57% entering, 43% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
3.02	1.33 - 4.02	*

Data Plot and Equation

Caution - Small Sample Size

Land Use: 934 Fast-Food Restaurant with Drive-Through Window

Description

This land use includes any fast-food restaurant with a drive-through window. This type of restaurant is characterized by a large drive-through and large carry-out clientele, long hours of service (some are open for breakfast, all are open for lunch and dinner, some are open late at night or 24 hours a day) and high turnover rates for eat-in customers. The restaurant does not provide table service. A patron generally orders from a menu board and pays before receiving the meal. A typical duration of stay for an eat-in patron is less than 30 minutes. Fast casual restaurant (Land Use 930), high-turnover (sit-down) restaurant (Land Use 932), fast-food restaurant without drive-through window (Land Use 933), and fast-food restaurant with drive-through window and no indoor seating (Land Use 935) are related uses.

Additional Data

Users should exercise caution when applying statistics during the AM peak periods, as the sites contained in the database for this land use may or may not be open for breakfast. In cases where it was confirmed that the sites were not open for breakfast, data for the AM peak hour of the adjacent street traffic were removed from the database.

If the restaurant has outdoor seating, its area is not included in the overall gross floor area. For a restaurant that has significant outdoor seating, the number of seats may be more reliable than GFA as an independent variable on which to establish a trip generation rate.

The technical appendices provide supporting information on time-of-day distributions for this land use. The appendices can be accessed through either the ITETripGen web app or the trip generation resource page on the ITE website (https://www.ite.org/technical-resources/topics/tripand-parking-generation/).

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in Alaska, Alberta (CAN), California, Colorado, Florida, Indiana, Kentucky, Maryland, Massachusetts, Minnesota, Montana, New Hampshire, New Jersey, New York, North Carolina, Ohio, Pennsylvania, South Dakota, Texas, Vermont, Virginia, Washington, and Wisconsin.

Source Numbers

163, 164, 168, 180, 181, 241, 245, 278, 294, 300, 301, 319, 338, 340, 342, 358, 389, 438, 502, 552, 577, 583, 584, 617, 640, 641, 704, 715, 728, 810, 866, 867, 869, 885, 886, 927, 935, 962, 977, 1050, 1053, 1054

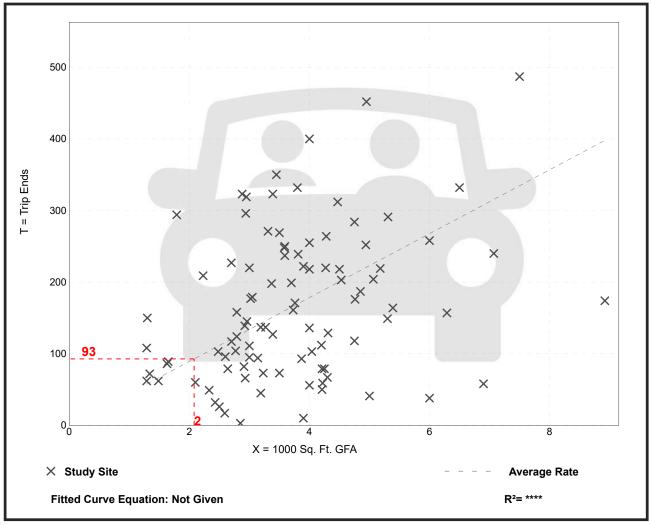
Fast-Food Restaurant with Drive-Through Window (934)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban


Number of Studies: 96 Avg. 1000 Sq. Ft. GFA: 4

Directional Distribution: 51% entering, 49% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
44.61	1.05 - 164.25	27.14

Data Plot and Equation

Trip Gen Manual, 11th Edition

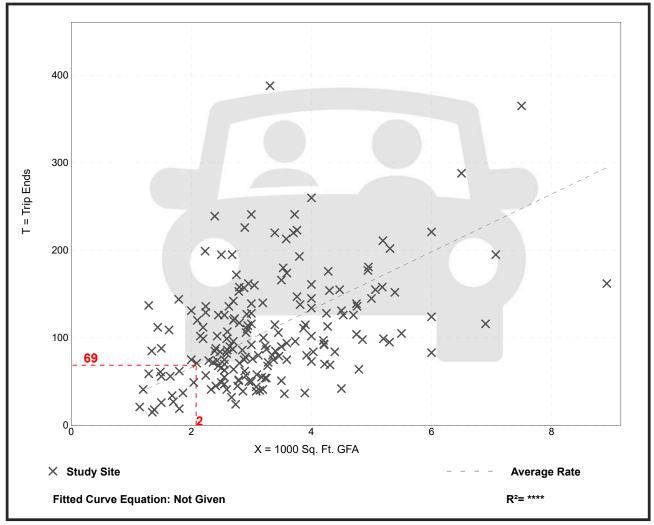
Fast-Food Restaurant with Drive-Through Window (934)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban


Number of Studies: 190 Avg. 1000 Sq. Ft. GFA: 3

Directional Distribution: 52% entering, 48% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
33.03	8.77 - 117.22	17.59

Data Plot and Equation

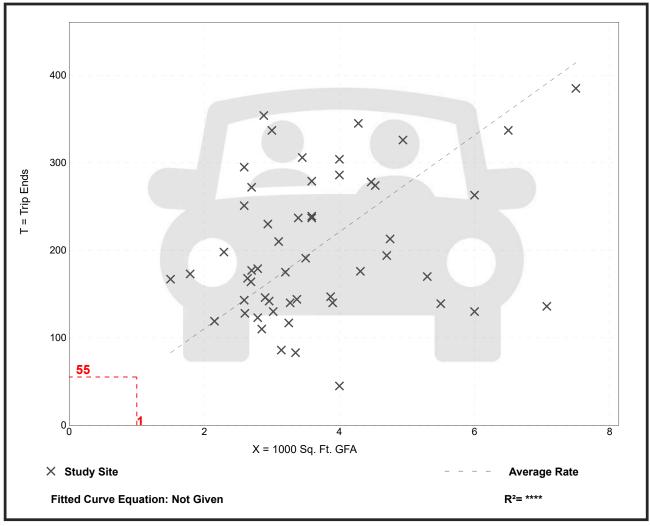
Trip Gen Manual, 11th Edition

Fast-Food Restaurant with Drive-Through Window (934)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban


Number of Studies: 53 Avg. 1000 Sq. Ft. GFA: 4

Directional Distribution: 51% entering, 49% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
55.25	11.25 - 122.92	24.62

Data Plot and Equation

Trip Gen Manual, 11th Edition

Land Use: 933 Fast-Food Restaurant without Drive-Through Window

Description

This land use includes any fast-food restaurant without a drive-through window. This type of restaurant is characterized by a large carry-out clientele, long hours of service (some are open for breakfast, all are open for lunch and dinner, some are open late at night or 24 hours a day) and high turnover rates for eat-in customers. These limited-service eating establishments do not provide table service. A patron generally orders from a menu board and pays before receiving the meal. A typical duration of stay for an eat-in customer is less than 30 minutes. Fast casual restaurant (Land Use 930), high-turnover (sit-down) restaurant (Land Use 932), and fast-food restaurant with drive-through window (Land Use 934) are related uses.

Additional Data

If the restaurant has outdoor seating, its area is not included in the overall gross floor area. For a restaurant that has significant outdoor seating, the number of seats may be more reliable than GFA as an independent variable on which to establish a trip generation rate.

The technical appendices provide supporting information on time-of-day distributions for this land use. The appendices can be accessed through either the ITETripGen web app or the trip generation resource page on the ITE website (https://www.ite.org/technical-resources/topics/tripand-parking-generation/).

The sites were surveyed in the 1980s and the 2010s in Alberta (CAN), California, Colorado, Connecticut, Maryland, Montana, Pennsylvania, and Texas.

Source Numbers

163, 247, 278, 319, 342, 885, 977, 1020

Fast-Food Restaurant without Drive-Through Window (933)

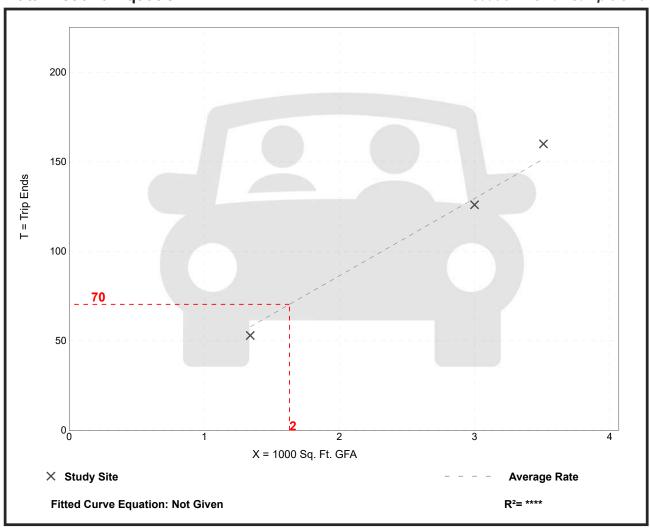
Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 3 Avg. 1000 Sq. Ft. GFA: 3


Directional Distribution: 58% entering, 42% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
43.18	39.55 - 45.58	2.84

Data Plot and Equation

Caution - Small Sample Size

Trip Gen Manual, 11th Edition

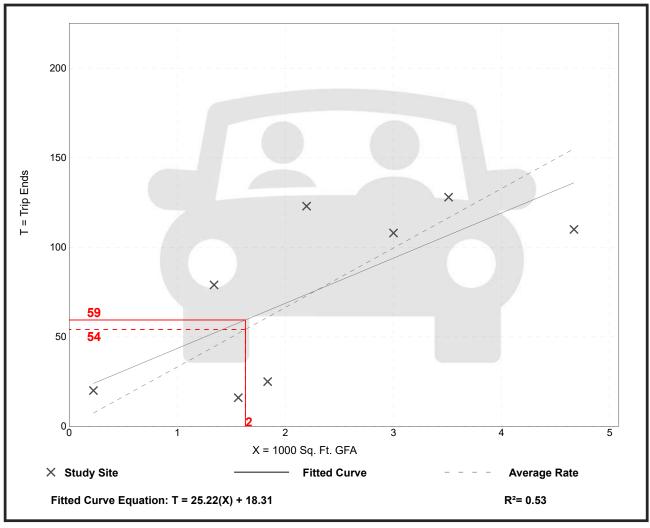
Fast-Food Restaurant without Drive-Through Window (933)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban


Number of Studies: 8 Avg. 1000 Sq. Ft. GFA: 2

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
33.21	10.23 - 89.29	17.22

Data Plot and Equation

Trip Gen Manual, 11th Edition

Fast Casual Restaurant

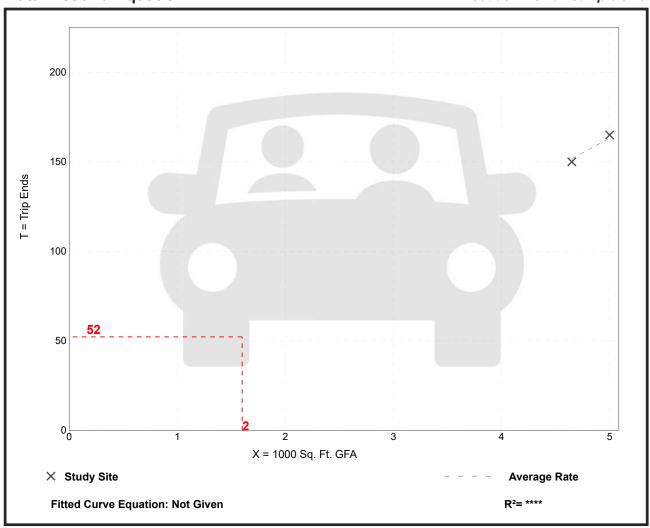
(930)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban

Number of Studies: 2 Avg. 1000 Sq. Ft. GFA: 5


Directional Distribution: 55% entering, 45% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
32.64	32.26 - 33.00	*

Data Plot and Equation

Caution - Small Sample Size

Trip Gen Manual, 11th Edition

Land Use: 822 Strip Retail Plaza (<40k)

Description

A strip retail plaza is an integrated group of commercial establishments that is planned, developed, owned, and managed as a unit. Each study site in this land use has less than 40,000 square feet of gross leasable area (GLA). Because a strip retail plaza is open-air, the GLA is the same as the gross floor area of the building.

The 40,000 square feet GFA threshold between strip retail plaza and shopping plaza (Land Use 821) was selected based on an examination of the overall shopping center/plaza database. No shopping plaza with a supermarket as its anchor is smaller than 40,000 square feet GLA.

Shopping center (>150k) (Land use 820), shopping plaza (40-150k) (Land Use 821), and factory outlet center (Land Use 823) are related uses.

Additional Data

The technical appendices provide supporting information on time-of-day distributions for this land use. The appendices can be accessed through either the ITETripGen web app or the trip generation resource page on the ITE website (https://www.ite.org/technical-resources/topics/tripand-parking-generation/).

The sites were surveyed in the 1980s, the 1990s, the 2000s, and the 2010s in Alberta (CAN), California, Delaware, Florida, New Jersey, Ontario (CAN), South Dakota, Vermont, Washington, and Wisconsin.

Source Numbers

304, 358, 423, 428, 437, 507, 715, 728, 936, 960, 961, 974, 1009

Strip Retail Plaza (<40k)

(822)

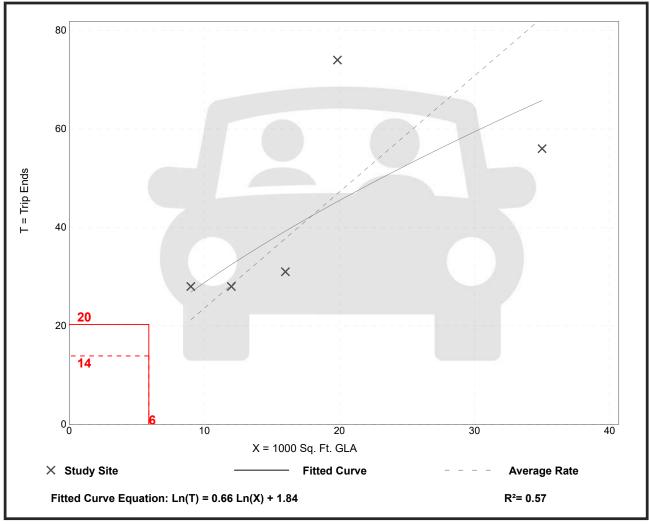
Vehicle Trip Ends vs: 1000 Sq. Ft. GLA

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban

Number of Studies: 5 Avg. 1000 Sq. Ft. GLA: 18


Directional Distribution: 60% entering, 40% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GLA

Average Rate	Range of Rates	Standard Deviation
2.36	1.60 - 3.73	0.94

Data Plot and Equation

Caution - Small Sample Size

Trip Gen Manual, 11th Edition

Strip Retail Plaza (<40k)

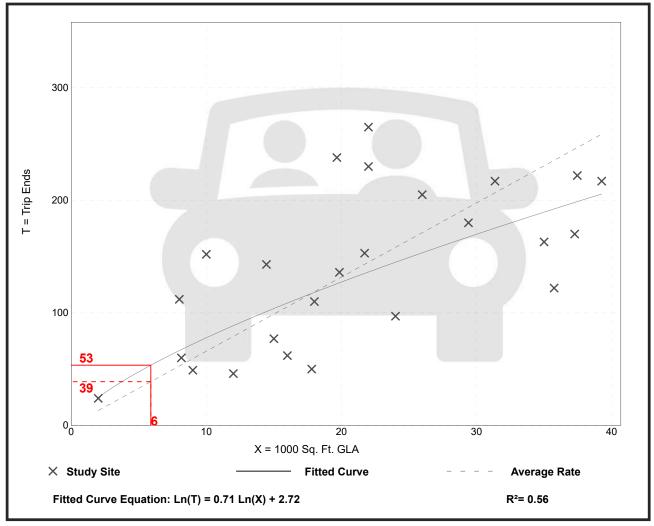
(822)

Vehicle Trip Ends vs: 1000 Sq. Ft. GLA

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban


Number of Studies: 25 Avg. 1000 Sq. Ft. GLA: 21

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GLA

Average Rate	Range of Rates	Standard Deviation
6.59	2.81 - 15.20	2.94

Data Plot and Equation

Trip Gen Manual, 11th Edition

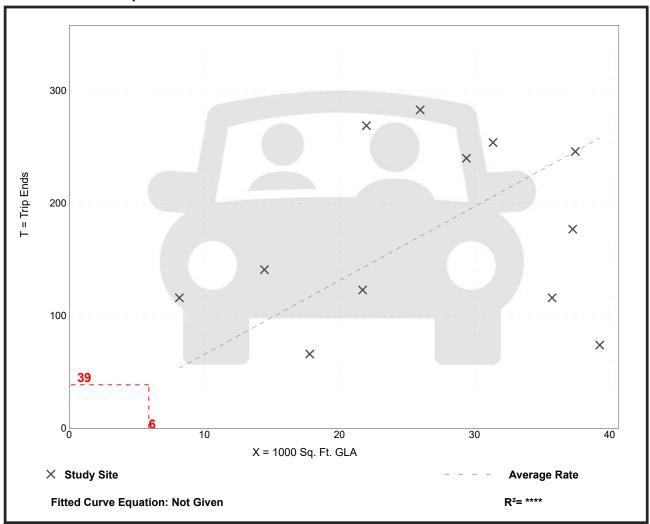
Strip Retail Plaza (<40k)

(822)

Vehicle Trip Ends vs: 1000 Sq. Ft. GLA

On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban


Number of Studies: 12 Avg. 1000 Sq. Ft. GLA: 27

Directional Distribution: 51% entering, 49% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GLA

Average Rate	Range of Rates	Standard Deviation
6.57	1.88 - 14.23	3.45

Data Plot and Equation

Trip Gen Manual, 11th Edition

ORD 2025-10692 Page 92 of 167

Proposed Mixed-Use Development 1250-1254 Ogden Avenue Downers Grove, Illinois

APPENDIX G ITE Pass-By Tables

Appendix G

			Vehicle Pas	s-By Rates	by Land Use										
		Sou	rce: ITE <i>Trip G</i>	eneration M	<i>lanual</i> , 11th Ed	ition									
Land Use Code					934										
Land Use			Fast-F	ood Restau	rant with Drive-	Through Windo	W								
Setting				Gene	eral Urban/Subu	ırban									
Time Period		Weekday AM Peak Period 5													
# Data Sites		5													
Average Pass-By Rate		50%													
		50% Pass-By Characteristics for Individual Sites													
				-											
	State or	Survey		Pass-By	No	n-Pass-By Trips		Adj Street Peak							
GFA (000)	Province	Year	# Interviews	Trip (%)	Primary (%)	Diverted (%)	Total (%)	Hour Volume	Source						
1.4	Kentucky	1993	_	62	22	16	38	1407	2						
3	Kentucky	1993	_	43	14	43	57	2903	2						
3.3		1996	_	68	_	_	32	_	21						
3.6	Kentucky	1993	_	32	47	21	68	437	2						
4.2	Indiana	1993	_	46	23	31	54	1049	2						

Appendix G

				-	by Land Use										
		Sou	rce: IIE <i>Trip G</i>	eneration IV	<i>lanual</i> , 11th Ed	ition									
Land Use Code					934										
Land Use			Fast-F	ood Restau	rant with Drive-	-Through Windo	w								
Setting				Gene	eral Urban/Subu	ırban									
Time Period				Wee	kday PM Peak P	eriod									
# Data Sites		11 55% Does By Characteristics for Individual Sites													
Average Pass-By Rate															
		ı	_		1			T							
	Pass-By Characteristics for Individual Sites State or Survey Pass-By Non-Pass-By Trips Adj Street Peak														
GFA (000)	State or Survey Pass-By Non-Pass-By Trips Adj Street Peak Private Province Year # Interviews Trip (%) Primary (%) Diverted (%) Total (%) Hour Volume Source														
1.3	Kentucky	1993	_	68	22	10	32	2055	2						
1.9	Kentucky	1993	33	67	24	9	33	2447	2						
2.8	Florida	1995	47	66	_	_	34	_	30						
2.9	Florida	1996	271	41	41	18	59	_	30						
3	Kentucky	1993	_	31	31	38	69	4250	2						
3.1	Florida	1995	28	71	_	_	29	_	30						
3.1	Florida	1996	29	38	_	_	62	_	30						
3.2	Florida	1996	202	40	39	21	60	_	30						
3.3	<u> </u>	1996	_	62		_	38	_	21						
4.2	Indiana	1993	_	56	25	19	44	1632	2						
4.3	Florida	1994	304	62	_	_	38	_	30						

ORD 2025-10692 Page 95 of 167

Proposed Mixed-Use Development 1250-1254 Ogden Avenue Downers Grove, Illinois

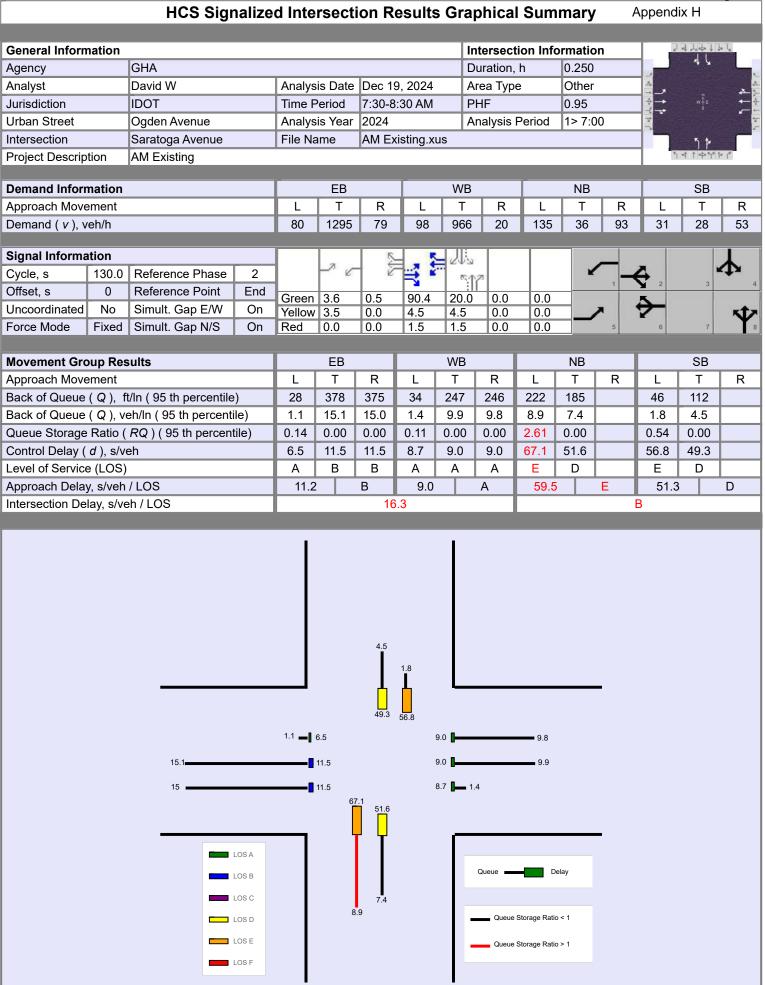
APPENDIX H Capacity Analysis Worksheets

ORD 2025-10692 Page 96 of 167

			HCS :	Signa	lized	Inters	sectio	n In	put Da	ta		,	Append	ix H	
	4.							1	1.4		4.			4741	L T
General Inform	ation	0.14						_	Intersect					41	
Agency		GHA			. 5 .	- In 1			Duration,		0.250		-		
Analyst		David W			is Date		9, 2024		Area Typ	e	Other			w∱E	E
Jurisdiction		IDOT		Time F			30 AM	_	PHF		0.95			W † E	Z
Urban Street		Ogden Avenue			is Year			, l	Analysis	Period	1> 7:0	00	-		7
Intersection		Saratoga Avenue		File Na	ame	AM Ex	kisting.x	us						<u>ን</u> የ	
Project Descripti	ion	AM Existing	-	-	-	-	-	-	_	-	-	-		4 1 4 Y 1	7
Demand Inform	nation				EB		1	W	В		NB		T	SB	
Approach Mover	ment			L	Т	R	L	Т	R	L	T	R	L	Т	R
Demand (v), ve	eh/h			80	1295	79	98	96	6 20	135	36	93	31	28	53
Cianal Informat	lion				_	35				_					
Signal Informat		Deference Dhase		-	7 /	- }	≣,я		tu l			_	,		▲Ⅰ
	130.0	Reference Phase	2	1	E	2	 - 3	ाह	17		S-5	1	♦ 2	3	4
Offset, s	0	Reference Point	End	Green		0.5	90.4	20.		0.0			حد		
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-	0.0	4.5	4.5		0.0		~	Z		Ψ
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	1.5	1.5	0.0	0.0	_	5	6	7	8
Traffic Informat	tion				EB			WB			NB			SB	
Approach Mover				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh				80	1295	79	98	966		135	36	93	31	28	53
Initial Queue (Q		h		0	0	0	0	0	0	0	0	0	0	0	0
Base Saturation				1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Parking (N _m), ma		()/			None			None	_		None			None	
Heavy Vehicles		<u> </u>		0	0		0	0		0	0		0	0	
Ped / Bike / RTC	• •	· ·		0	0	0	0	0	0	0	0	0	0	0	0
Buses (N _b), buse	(N _b), buses/h			0	0	0	0	0	0	0	0	0	0	0	0
Arrival Type (AT				3	3	3	3	3	3	3	3	3	3	3	3
	am Filtering (/)			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (W	Vidth (W), ft			12.0	12.0		12.0	12.0		12.0	12.0		12.0	12.0	
Turn Bay Length	ay Length, ft			200	0		315	0		85	0		85	0	
Grade (Pg), %					0			0			0			0	
Speed Limit, mi/	'n			35	35	35	35	35	35	35	35	35	35	35	35
													251		
Phase Informat) or Phase Split, s		EBL	_	91.0	13.0	-	91.0	NBL	_	NBT	SBL	_	SBT
Yellow Change I		, , ,		13.0 3.5		4.5	3.5	_	4.5			26.0 4.5			26.0 4.5
Red Clearance I		· ·		0.0	_	1.5	0.0	_	1.5			1.5			1.5
Minimum Green				3		15	3	\dashv	15			6			6
Start-Up Lost Tir				2.0	_	2.0	2.0	_	2.0	2.0	_	2.0	2.0		2.0
Extension of Effe				2.0		2.0	2.0	_	2.0	2.0	_	2.0	2.0		2.0
Passage (<i>PT</i>), s		- (-);		2.0	\neg	2.0	2.0		2.0			2.0			2.0
Recall Mode				Off		Min	Off		Min			Off			Off
Dual Entry				No		Yes	No		Yes			Yes			Yes
Walk (Walk), s	·					0.0			0.0			0.0			0.0
Pedestrian Clea	edestrian Clearance Time (<i>PC</i>), s					0.0			0.0			0.0			0.0
Multimodal Info	rmatic	on.			EB			WB			NB			SB	
		Walk / Corner Radi	us	0.0	No	25.0	0.0	No	25.0	0.0	No	25.0	0.0	No	25.0
		Vidth / Length, ft		9.0	12.0	0.0	9.0	12.0		9.0	12.0	0.0	9.0	12.0	0.0
Street Width / Is				0.0	0	No	0.0	0	No	0.0	0	No	0.0	0	No
		ane / Shoulder, ft		12.0	5.0	2.0	12.0	5.0	2.0	12.0	5.0	2.0	12.0	5.0	2.0
Pedestrian Signa		· · · · · · · · · · · · · · · · · · ·		No		0.50	No		0.50	No		0.50	No		0.50

Generated: 12/19/2024 9:16:52 AM

Page 97 of 167 ORD 2025-10692


2023-10092		HCS	S Sigr	nalize	d Inte	ersect	ion R	esu	lts Sur	nmary	,	,	Append		age 97 0
	4.										4.			4 사사 1	L. T
General Inform	nation	0114							Intersec					4 844	\$ /s
Agency		GHA		1		- I			Duration		0.250				E
Analyst		David W				Dec 1			Area Typ	ре	Other	-			<u>~</u>
Jurisdiction		IDOT		Time F			3:30 AM		PHF		0.95			W + E	7
Urban Street		Ogden Avenue		_		r 2024			Analysis	Period	1> 7:0	00	7		-
Intersection		Saratoga Avenue		File Na	ame	AM E	xisting.x	us						ጎታ	
Project Descrip	tion	AM Existing							_					4 1 4 7	7 1
Demand Inform	nation				EB		7	W	В		NB		T	SB	
Approach Move	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			80	1295	79	98	96	6 20	135	36	93	31	28	53
															<u> </u>
Signal Informa	_				21	_ 8	_ , ;		la la		728	_	_		\downarrow
Cycle, s	130.0	Reference Phase	2		- E			ा	542		×		€ 2	3	4
Offset, s	0	Reference Point	End	Green	3.6	0.5	90.4	20	.0 0.0	0.0			<u></u>		
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-	0.0	4.5	4.5		0.0		<i>></i>	~		V
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	1.5	1.5	5 0.0	0.0		5	6	7	8
Timer Results				EBI	_	EBT	WB		WBT	NBI		NBT	SBI	_	SBT
Assigned Phase				5	-	2	1	-	6	INDI	-	8	301	_	4
Case Number	<u> </u>			1.1	_	4.0	1.1	_	4.0			6.0			6.0
Phase Duration	. s			7.1	_	96.4	7.6	_	96.9			26.0			26.0
Change Period,	·	c), S		3.5	\neg	6.0	3.5	_	6.0			6.0			6.0
Max Allow Head				3.1	\neg	0.0	3.1	\neg	0.0			3.3		\neg	3.3
	ue Clearance Time (g $_{s}$), s						4.1					21.6			14.8
Green Extensio	en Extension Time (g e), s			0.0	\neg	0.0	0.1	\neg	0.0			0.0		\neg	0.4
Phase Call Prol	en Extension Time ($g \in$), s se Call Probability				5		0.98	3				1.00			1.00
Max Out Probal	·				2		0.05	5				1.00			0.28
Movement Gro	x Out Probability vement Group Results				EB			WE	3		NB			SB	
Approach Move					T	R	L	Т	R		T	R		T	R
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow F), veh/h		84	729	717	103	521	_	142	136		33	85	
		ow Rate (s), veh/h/l	n	1810	1900	1861	1810	190	_	1333	1682		1273	1700	
Queue Service	Time (g	g s), S		1.8	24.7	24.8	2.1	14.8	3 14.8	13.8	9.7		3.1	5.8	
Cycle Queue C	learanc	e Time (<i>g c</i>), s		1.8	24.7	24.8	2.1	14.8	3 14.8	19.6	9.7		12.8	5.8	
Green Ratio (g	/C)			0.72	0.70	0.70	0.73	0.70	0.70	0.15	0.15		0.15	0.15	
Capacity (c), v	eh/h			421	1321	1294	301	132	8 1319	201	259		157	262	
Volume-to-Capa				0.200	0.552	0.554	0.342	0.39	_	0.707	0.525		0.208	0.326	
	, ,	t/ln (95 th percentile	,	28	378	375	34	247		222	185		46	112	
		eh/ln (95 th percent		1.1	15.1	15.0	1.4	9.9	_	8.9	7.4		1.8	4.5	
		RQ) (95 th percent	tile)	0.14	0.00	0.00	0.11	0.00		2.61	0.00		0.54	0.00	
Uniform Delay (6.4	9.8	9.8	8.4	8.1		57.7	50.6		56.5	49.0	
	remental Delay (d 2), s/veh			0.1	1.7	1.7	0.2	0.9		9.3	1.0		0.2	0.3	
	tial Queue Delay (d 3), s/veh			0.0	0.0	0.0	0.0	0.0	_	0.0	0.0		0.0	0.0	
	ntrol Delay (d), s/veh vel of Service (LOS)			6.5 A	11.5 B	11.5 B	8.7 A	9.0 A	9.0 A	67.1 E	51.6 D		56.8 E	49.3 D	
Approach Delay				11.2		В	9.0		A	59.5		E	51.3		D
Intersection Del				11.2			6.3			55.0			B		
Multimodal Re	sults				EB			WE	3		NB			SB	
Pedestrian LOS				1.87	-	В	1.87	_	В	2.3		В	2.31		В
Bicycle LOS Sc	ore / LC	OS		1.75	5	В	1.43	3	Α	0.95	5	Α	0.68	3	Α

Generated: 12/19/2024 9:16:52 AM

ORD 2025-10692 Page 98 of 167

		HCS	Sigr	ali	zed I	nters	ectior	n Inte	ern	nedia	te Va	lues			Append	H xib	Page 98
0 11 6	.41										41						TIST
General Inform	ation	OLIA									section	-			- 1	1	Name and Address of the Owner, where
Agency		GHA		ΙΔ.		D-4-	D = = 40	0004			tion, h	_	0.25		-		
Analyst		David W		_	-	$\overline{}$	Dec 19,				Туре	\rightarrow	Othe			1	
Jurisdiction		IDOT		_	me Pe	$\overline{}$	7:30-8:3	U AM		PHF	:- D		0.95			w‡	-
Urban Street		Ogden Avenue		\rightarrow	nalysis	\rightarrow	2024	4:		Anaiy	ysis Per	ioa	1> 7	:00	-		
Intersection		Saratoga Avenue AM Existing		FI	le Nan	ne į	AM Exis	ting.xi	us						- 1	ু গুৰ্ণুৰ	7 + C
Project Descript	.1011	AIVI Existing															
Demand Inform	nation					EB			٧	VΒ			NE	3		SE	3
Approach Move	ment				L	T	R	L		Т	R	L	Т	R	L	Т	R
Demand (v), ve	eh/h			┸	80	1295	79	98	9	966	20	135	36	93	31	28	53
Signal Informat	tion					1	Б.			II:							
Cycle, s	130.0	Reference Phase	2	1	-	1 v	Ħ	.7		Ψb			6		A		4
Offset, s	0	Reference Point	End	L		(E)	1000 8	4		542				1	2		3
Uncoordinated	No	Simult. Gap E/W	On		reen :			90.4				0.0	-		→		-4
Force Mode	Fixed	Simult. Gap N/S	On			0.0		4.5 1.5	4			0.0		5	6		, Y
, cree mede		Carriage Cap Ture					0.0										
Saturation Flow	w / Dela	ıy		L	Т	R	L	Т		R	L	Т	-	R	L	Т	R
Lane Width Adju	ıstment	Factor (fw)	1.	000	1.000	1.000	1.000	1.00	00	1.000	1.000	1.0	00	1.000	1.000	1.00	1.000
Heavy Vehicles	and Gr	ade Factor (f _{HVg})	1.	000	1.000	1.000	1.000	1.00	00	1.000	1.000	1.0	00	1.000	1.000	1.00	1.000
Parking Activity	Adjustn	nent Factor (fp)	1.	000	1.000	1.000	1.000	1.00	00	1.000	1.000	1.0	00	1.000	1.000	1.00	1.000
Bus Blockage A	djustme	ent Factor (fbb)	1.0	000	1.000	1.000	1.000	1.00	00	1.000	1.000	1.0	00	1.000	1.000	1.00	1.000
Area Type Adjus	stment I	-actor (f _a)	1.0	000	1.000	1.000	1.000	1.00	00	1.000	1.000	1.0	00	1.000	1.000	1.00	1.000
Lane Utilization	Adjustn	nent Factor (fLU)	1.0	000	1.000		1.000	1.00	00	1.000	1.000		\rightarrow	1.000	1.000	1.00	1.000
Left-Turn Adjust			0.9	952	0.000		0.952	0.00	00		0.702	0.0	00		0.670	0.00	-
Right-Turn Adjus		, ,	_		0.980	0.980		0.99	93	0.993		0.8	85	0.885		0.89	5 0.895
		djustment Factor (fLpi	_	000			1.000	<u> </u>	_		1.000	4_			1.000		
		ljustment Factor (f _{Rp.}	_			1.000		<u> </u>	4	1.000	┞	↓_		1.000			1.000
Work Zone Adju		Factor (fwz)	_	000	1.000			-	\rightarrow	1.000	1.000		\rightarrow	1.000	1.000	1.00	
DDI Factor (fdd)			_	000	1.000	1.000	_	1.00	00	1.000	1.000	1.0	00	1.000	1.000	1.00	1.000
		. Factor (fcAV,prot)	1	.00		-	1.00	₩	-		1.00	+-					+
		dj. Factor (fcav,perm)	+			0.10	1010	ļ.,			1.00	100		1010	1.00		11110
		low Rate (s), veh/h	_	310	3545	_	1810	370	\rightarrow	77	1333	-	$\overline{}$	1212	1273	588	
		Arriving on Green (P	_	.03	0.70	0.70	0.03	0.7	\rightarrow	0.70	0.15	0.1	\rightarrow	0.15	0.15	0.15	
Incremental Del	ay Fact	or (<i>k</i>)	0	.04	0.50	0.50	0.04	0.5	0	0.50	0.23	0.0)6		0.04	0.04	
Signal Timing /	Mover	ment Groups	т	EBL	_	EBT/R	WE	3L	W	BT/R	NE	3L	N	IBT/R	SBL		SBT/R
Lost Time (t∠)			Т	3.5		6.0	3.5			6.0				6.0			6.0
Green Ratio (g/0	C)		\top	0.72	:	0.70	0.7	3	C).70			(0.15			0.15
Permitted Satura	ation Fl	ow Rate (<i>s_ρ</i>), veh/h/l	n	552		0	37	4		0			1	1333			1273
Shared Saturation	on Flow	/ Rate (ssh), veh/h/ln															
Permitted Effect	ive Gre	en Time (g_{ρ}), s		90.4		0.0	90.	.4		0.0			2	20.0			20.0
Permitted Service	ce Time	(g _u), s		74.1		0.0	65.	.5		0.0			,	14.2			10.3
Permitted Queu	e Servi	ce Time (g _{ps}), s		2.9			9.5	5					•	13.8			3.1
Time to First Blo	ckage	(<i>g</i> _f), s		0.0		0.0	0.0	0	(0.0				0.0			0.0
Queue Service	Time Be	efore Blockage (<i>gf</i> s),	s														
Protected Right	Saturat	tion Flow (<i>s</i> _R), veh/h/	ln														
Protected Right	Effectiv	ve Green Time (<i>g</i> _R), s	;														
Multimodal					EB			W	В			N	В			SB	
Pedestrian F _w /	Fv			1.19	8	0.000	1.19	98	0	.000	1.5	57	0	.000	1.55	7	0.000
Pedestrian Fs / I	F _{delay}			0.00	0	0.072	0.00	00	0.	.071	0.0	00	0	.154	0.00	0	0.154
Pedestrian Mcorr	ner / M cw			0.00			0.0	0			0.0	0			0.00)	
Bicycle c _b / d _b			1:	390.0	66	6.03	1398	3.11		5.89	307	.69	4	6.54	307.6	89	46.54
Bicycle Fw / Fv				-3.64	1	1.26	-3.6	34	C).94	-3.6	34	(0.46	-3.64	4	0.19

ORD 2025-10692 Page 99 of 167

--- Messages ---

Appendix H

Generated: 12/19/2024 9:16:52 AM

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ---

Copyright © 2024 University of Florida, All Rights Reserved.

HCS™ Streets Version 2024

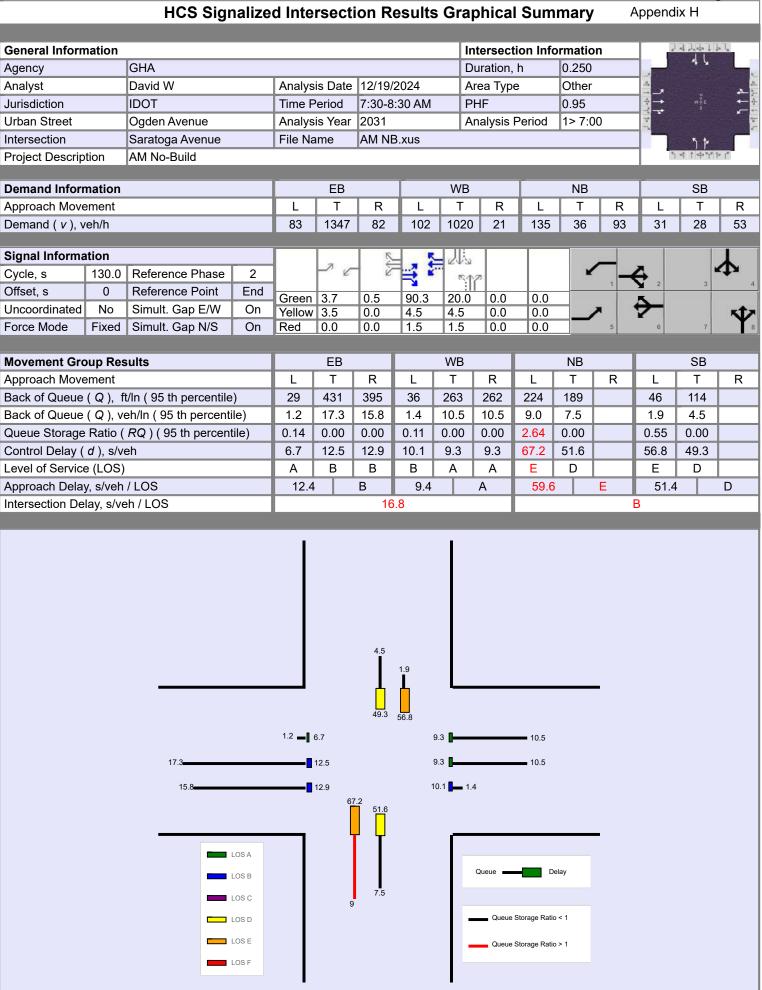
AM Existing.xus

ORD 2025-10692 Page 101 of 167

KD 2023-10092	HCS	Signa	lized	Inters	sectio	n In	put Da	ta		,	Append		ge 101 0
General Information	_						Intersec					4741	<u> </u>
Agency	GHA	1		1			Duration		0.250		J		
Analyst	David W		sis Date				Area Typ	е	Other		∆ -1 7		<u>*</u>
Jurisdiction	IDOT	Time I	Period	7:30-8	3:30 AM		PHF		0.95		₩	w E 8	←
Urban Street	Ogden Avenue	Analys	sis Yea				Analysis	Period	1> 7:0	00	7		tr c
Intersection	Saratoga Avenue	File N	ame	AM N	B.xus							7 1	
Project Description	AM No-Build										ħ	বাঞ্দ	h (*
Demand Information		T	EB		1	W	'B	7	NB		1	SB	
Approach Movement		L	Т	R	L	7	R	L	Т	R	L	Т	R
Demand (v), veh/h		83	1347	82	102	10	20 21	135	36	93	31	28	53
Ciamal Information		-	1	35				_					
Signal Information	Deference Disease 0	-	1 0	<u> </u>	≒ ,		/bi			_	,		人
Cycle, s 130.0	Reference Phase 2	-		2	3.	ा	542			1	♀ 2	3	4
Offset, s 0	Reference Point End	Green		0.5	90.3	20		0.0			<u> </u>		
Uncoordinated No	Simult. Gap E/W On	Yellow	-	0.0	4.5	4.5		0.0			7		Ŵ
Force Mode Fixed	Simult. Gap N/S On	Red	0.0	0.0	1.5	1.5	5 0.0	0.0		5	6	7	8
Traffic Information		_	EB			WE	₹		NB			SB	
Approach Movement			T	R	L	T	R	L	T	R		T	R
Demand (v), veh/h		83	1347	82	102	102		135	36	93	31	28	53
Initial Queue (Q _b), veh	/h	00	0	0	0	0	0 21	0	0	0	0	0	0
Base Saturation Flow F		1900	1900	1900	1900	190		1900	1900	1900	1900	1900	1900
Parking (<i>N_m</i>), man/h	itale (30), veriiri	0	L + R	0	1900	Non		1900	None	1900	1900	None	1900
Heavy Vehicles (Phv),	0/_	0	0	0	0	0	6	0	0		0	0	
Ped / Bike / RTOR, /h	70	0							_		_		
		+-	0	0	0	0	0	0	0	0	0	0	0
Buses (N _b), buses/h		0	0	0	0	0	0	0	0	0	0	0	0
Arrival Type (AT)		3	3	3	3	3	3	3	3	3	3	3	3
Upstream Filtering (/)		1.00	1.00	1.00	1.00	1.00	_	1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (W), ft		12.0	12.0		12.0	12.0	J	12.0	12.0		12.0	12.0	
Turn Bay Length, ft		200	0		315	0		85	0		85	0	
Grade (<i>Pg</i>), %		0.5	0	0.5	0.5	0	0.5	05	0	0.5	0.5	0	0.5
Speed Limit, mi/h		35	35	35	35	35	35	25	25	25	25	25	25
Phase Information		EBL		EBT	WBI		WBT	NBL		NBT	SBL		SBT
Maximum Green (Gmax		13.0		91.0	13.0	_	91.0		_	26.0			26.0
Yellow Change Interva	· ' '	3.5		4.5	3.5	_	4.5			4.5			4.5
Red Clearance Interva		0.0		1.5	0.0		1.5			1.5			1.5
Minimum Green (Gmin)	,	3		15	3		15			6			6
Start-Up Lost Time (It)		2.0		2.0	2.0	\rightarrow	2.0	2.0	_	2.0	2.0	_	2.0
Extension of Effective	Green (e), s	2.0		2.0	2.0	_	2.0	2.0	_	2.0	2.0	_	2.0
Passage (PT), s		2.0	_	2.0	2.0	-	2.0	_	_	2.0			2.0
Recall Mode Dual Entry		Off No	_	Min Yes	Off No	_	Min Yes			Off Yes			Off Yes
	`				INO	+		_	_				
, ,	lk (<i>Walk</i>), s			0.0			0.0			0.0			0.0
redesirian Clearance	lestrian Clearance Time (<i>PC</i>), s			0.0			0.0			0.0			0.0
Multimodal Information	on		EB			WE	3		NB			SB	
	n Walk / Corner Radius	0.0	No	25.0	0.0	No	25.0	0.0	No	25.0	0.0	No	25.0
Walkway / Crosswalk V	Width / Length, ft	9.0	12.0	0.0	9.0	12.0	0.0	9.0	12.0	0.0	9.0	12.0	0.0
Street Width / Island / 0	Curb, ft	0.0	0	No	0.0	0	No	0.0	0	No	0.0	0	No
Width Outside / Bike La	ane / Shoulder, ft	12.0	5.0	2.0	12.0	5.0	2.0	12.0	5.0	2.0	12.0	5.0	2.0
Pedestrian Signal / Oc	cupied Parking	No		0.50	No		0.50	No		0.50	No		0.50

Generated: 12/19/2024 9:09:16 AM

Page 102 of 167 ORD 2025-10692


		HCS	S Sigr	nalize	d Int	ersect	ion R	esu	Its S	Sum	mary	•		Append	lix H	
General Inform	ation								Into	react	ion Info	ormati	n n	Γ.	4 744	b L
	iation	GHA								ation,		0.250			41	
Agency		David W		Analys	sia Da	te 12/19	/2024					Other				E.
Analyst Jurisdiction		IDOT		Analys Time F			3:30 AM		PHF	а Туре -	5	0.95			w∳E	÷
Urban Street		Ogden Avenue		Analys			5.30 AIVI				Period	1> 7:	20	_ →		-
Intersection		Saratoga Avenue		File Na		AM N	D vuo		Allal	iysis r	enou	177.	00	-	200	-
Project Descrip	tion	AM No-Build		File IN	ame	AIVI IN	D.XUS) / বেক্ষ	7 1
1 Toject Bescrip	tion	7 W TVO-Build														
Demand Inform	nation				EE	3		V	/B			NB			SB	
Approach Move	ement			L	Т	R	L		T	R	L	Т	R	L	T	R
Demand (v), v	eh/h			83	134	7 82	102	10	20	21	135	36	93	31	28	53
Signal Informa	tion				T	- 100	v: 1		[: [_					
	_	Reference Phase	2	ł	7	<u> </u>	≒ ,	- T	l'a			78	_	Я		▲□
Cycle, s Offset, s	130.0		2 End	-		2	T .	2	542			55	1	♀ 2	3	4
	oordinated No Simult. Gap E/W Company			Green		0.5	90.3			0.0	0.0		_			
Force Mode	pordinated No Simult. Gap E/W Compared Results gned Phase Puration, s nge Period, (Y+Rc), s Allow Headway (MAH), s			Yellow Red	0.0	0.0	4.5 1.5	4. 1.		0.0	0.0		_		7	Ψ.
Porce Mode	r Results ned Phase Number e Duration, s ge Period, (Y+R c), s Allow Headway (MAH), s e Clearance Time (g s), s			Neu	10.0	10.0	1.5	1.	J	0.0	0.0		9	0	,	8
Timer Results	er Results gned Phase e Number se Duration, s nge Period, (Y+R c), s Allow Headway (MAH), s ue Clearance Time (g s), s on Extension Time (g e), s			EBI		EBT	WB	L	WB	3T	NBL	-	NBT	SBI	L	SBT
Assigned Phase	е			5		2	1	\neg	6				8			4
Case Number				1.1		4.0	1.1		4.0)			6.0			6.0
Phase Duration	, S			7.2		96.3	7.7		96.	8			26.0			26.0
Change Period,	, (Y+R	c), S		3.5		6.0	3.5		6.0)			6.0			6.0
	x Allow Headway (<i>MAH</i>), s eue Clearance Time (<i>g</i> _s), s					0.0	3.1	\rightarrow	0.0)			3.4			3.4
	, z ,				_		4.2						21.7			14.8
	en Extension Time (g $_{ extstyle e}$), s				_	0.0	0.1	_	0.0)		\perp	0.0			0.5
	se Call Probability				3		0.98	\rightarrow		_		_	1.00			1.00
Max Out Probal	<u> </u>			0.03	3		0.06	6	_		_		1.00			0.33
Movement Gro	x Out Probability vement Group Results				EB			WI	B			NB			SB	
Approach Move		74110			T	R	L	T	_	R	L	T	R	L	T	R
Assigned Move				5	2	12	1	6	_	16	3	8	18	7	4	14
Adjusted Flow F), veh/h		87	797	707	107	550	0 5	46	142	136		33	85	
		ow Rate (s), veh/h/l	n	1810	1900	_	1810	190	0 18	886	1333	1682		1273	1700	
Queue Service	Time (g	g s), S		1.8	28.7	29.0	2.2	16.	0 1	6.0	13.8	9.7		3.1	5.8	
Cycle Queue C	learanc	e Time (<i>g c</i>), s		1.8	28.7	29.0	2.2	16.	0 1	6.0	19.7	9.7		12.8	5.8	
Green Ratio (g	/C)			0.72	0.69	0.69	0.73	0.7	0 0.	.70	0.15	0.15		0.15	0.15	
Capacity (c), v	eh/h			400	1320	1162	281	132	7 13	317	201	259		156	261	
Volume-to-Capa				0.218	0.60		0.382	0.41	_	414	0.708	0.525		0.209	0.326	
		t/ln (95 th percentile		29	431	395	36	26	_	262	224	189		46	114	
		eh/ln (95 th percenti		1.2	17.3		1.4	10.	_	0.5	9.0	7.5		1.9	4.5	
		RQ) (95 th percent	ile)	0.14	0.00	_	0.11	0.0	_	.00	2.64	0.00		0.55	0.00	
Uniform Delay (`			6.6	10.5		9.8	8.3	\rightarrow	3.3	57.8	50.6		56.6	49.0	
	cremental Delay (d 2), s/veh			0.1	2.1	2.4	0.3	0.0	_	1.0	9.4	0.0		0.2	0.3	
	tial Queue Delay (d 3), s/veh ontrol Delay (d), s/veh			6.7	0.0 12.5	0.0	0.0	9.3	_	0.0 9.3	67.2	51.6		0.0 56.8	0.0 49.3	
Level of Service				A	12.0 B	12.9 B	B	9.0 A	_	9.3 A	67.2 E	D D		50.6 E	49.3 D	
Approach Delay				12.4		В	9.4		A	_	59.6		E	51.4		D
Intersection Del							6.8				55.0			B		
Multimodal Re					EB			WI				NB			SB	
Pedestrian LOS				1.87	_	В	1.87	\rightarrow	В	_	2.31	_	В	2.3	_	В
Bicycle LOS Sc	ore / LC	OS		1.80)	В	1.48	8	Α		0.95		Α	0.68	3	Α

Generated: 12/19/2024 9:09:16 AM

ORD 2025-10692 Page 103 of 167

		HCS	Sign	aliz	zed I	nters	ectior	ı Inte	ern	nedia	te Va	lues			Append	H xib	
General Inform	otion									Intor	section	Infor	mati	ion		1414	. Ja la
Agency	ation	GHA								-	tion, h	-	0.25			41	
Analyst		David W		Δr	nalysis	Data	12/19/20	124		Area	· · · · · · · · · · · · · · · · · · ·		Othe		4		
Jurisdiction		IDOT		_	me Pe	$\overline{}$	7:30-8:3			PHF	туре	\rightarrow	0.95		= -7	w∔E	∴
Urban Street		Ogden Avenue		_	nalysis	$\overline{}$	2031	O AIVI			/sis Per	$\overline{}$	1> 7		-€ -₹		-
Intersection		Saratoga Avenue		_	le Nan		AM NB.	(IIS		/ triary	7515 1 61	iou	1- 1	.00		K 4.	
Project Descript		AM No-Build			C I Vali		WITE.	· · ·							- ·	ነ ቀ ሰ ቀ ነ	7 4 5
Demand Inform	otion			P		EB			١/	VB			NE)		SB	
Approach Move				₩	L	T	R	L	_	T	R	L	T	R	L	T	R
Demand (v), ve				-	_	1347	82	102	-	_		135	36		31	28	53
Demand (V), ve	511/111				00	1347	02	102		020	21	155	30	95	31	20	33
Signal Informat	tion						5	- 5	V	Ja	П						1
Cycle, s	130.0	Reference Phase	2		-	26		4		542					4		4
Offset, s	0	Reference Point	End	Gr	een 3	3.7	0.5	90.3	120	:11	0.0	0.0		1	¥ 2	3	
Uncoordinated	No	Simult. Gap E/W	On		ellow 3			4.5	4.			0.0		<i>></i>	→		SŤ.
Force Mode	Fixed	Simult. Gap N/S	On	Re	ed (0.0		1.5	1.		0.0	0.0		5	6	7	
Saturation Flow	v / Dela	W			Т	R	l L	Т	7	R		Γ -	Г	R	L	Т	R
Lane Width Adju		•	_	000	1.000			1.00	\rightarrow	1.000	1.000		000	1.000	1.000	1.000	1.000
Heavy Vehicles			_	\rightarrow	1.000	_	_	\vdash	-	1.000	1.000		000	1.000	1.000	1.000	1.000
Parking Activity			_	000	1.000	-		-	\rightarrow	1.000	1.000	-	000	1.000	1.000	1.000	1.000
Bus Blockage A		,	_	000	1.000	1.000		1.00	\rightarrow	1.000	1.000		000	1.000	1.000	1.000	1.000
Area Type Adjus	-	· ,	_	000	1.000			1.00	\rightarrow	1.000	1.000		000	1.000	1.000	1.000	1.000
Lane Utilization		· ,	_	000	1.000	1.000		1.00	\rightarrow	1.000	1.000		000	1.000	1.000	1.000	1.000
Left-Turn Adjust	•	· , ,	0.9	\rightarrow	0.000		0.952	_	\rightarrow		0.702		000		0.670	0.000	
Right-Turn Adjus			1		0.881	0.881		0.99	\rightarrow	0.993		_	885	0.885		0.895	+
		ljustment Factor (fLpt) 1.0	000			1.000		\neg		1.000				1.000		
		ljustment Factor (f _{Rpl}	_			1.000		1	\exists	1.000		1		1.000			1.000
Work Zone Adju		•	_	000	1.000	1.000	1.000	1.00	00	1.000	1.000	1.0	000	1.000	1.000	1.000	1.000
DDI Factor (fdd))	· /	1.0	000	1.000	1.000	1.000	1.00	00	1.000	1.000	1.0	000	1.000	1.000	1.000	1.000
Left-Turn Prot. C	CAV Adj	. Factor (fcav,prot)	1.	00			1.00					1					
Left-Turn Perm.	CAV A	dj. Factor (fcav,perm)	Т								1.00				1.00		
Movement Satur	ration F	low Rate (s), veh/h	18	10	3369	204	1810	371	0	76	1333	46	39	1212	1273	588	1112
Proportion of Ve	hicles A	Arriving on Green (P)	0.	03	0.69	0.69	0.03	0.7	0	0.70	0.15	0.	15	0.15	0.15	0.15	0.15
Incremental Dela	ay Fact	or (<i>k</i>)	0.	04	0.50	0.50	0.04	0.5	0	0.50	0.23	0.0	06		0.04	0.04	
Signal Timing /	Mover	nent Groups		EBL		EBT/R	WE	RI .	\٨/	BT/R	NE	RI.	N	BT/R	SBI		SBT/R
Lost Time (t_L)	MOVE	nent Groups	-	3.5		6.0	3.5			6.0	INL)L		6.0	301	_	6.0
Green Ratio (g/0	C)		+	0.72		0.69	0.7	_		0.70				0.0			0.15
,-		ow Rate (<i>s</i> _₽), veh/h/l	_	523		0	35			0				333		_	1273
		Rate (ssh), veh/h/ln															
Permitted Effect		· ,	_	90.3		0.0	90.	3		0.0			2	20.0		\neg	20.0
Permitted Service		,= ,	_	72.9	_	0.0	61.	-		0.0				14.2			10.3
Permitted Queue		1- 1	_	3.5			12.	_						13.8			3.1
Time to First Blo				0.0		0.0	0.0	_	(0.0				0.0			0.0
		efore Blockage (g_{fs}),	s														
Protected Right	Saturat	ion Flow (s _R), veh/h/	ln														
		re Green Time (g _R), s	_														
Multimodal					EB			W	В			N	IB			SB	
Pedestrian F _w / I	Fv		1	1.198		0.000	1.19			.000	1.5			.000	1.55		0.000
Pedestrian F _s / F			_	0.000		0.072	0.00	_		.071	0.0			.154	0.00		0.154
Pedestrian Mcorn			_	0.00	_		0.0	_			0.0				0.00		
			_		_	6.07	1396	_	5	5.91	307		4	6.54	307.6	_	46.54
Bicycle c _b / d _b			13	389.0)5	0.07	1390	.00	U). J I	307	.00		0.0 .	007.0	,0	

ORD 2025-10692 Page 104 of 167

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ---

Copyright © 2024 University of Florida, All Rights Reserved.

HCS™ Streets Version 2024 AM NB.xus

Generated: 12/19/2024 9:09:16 AM

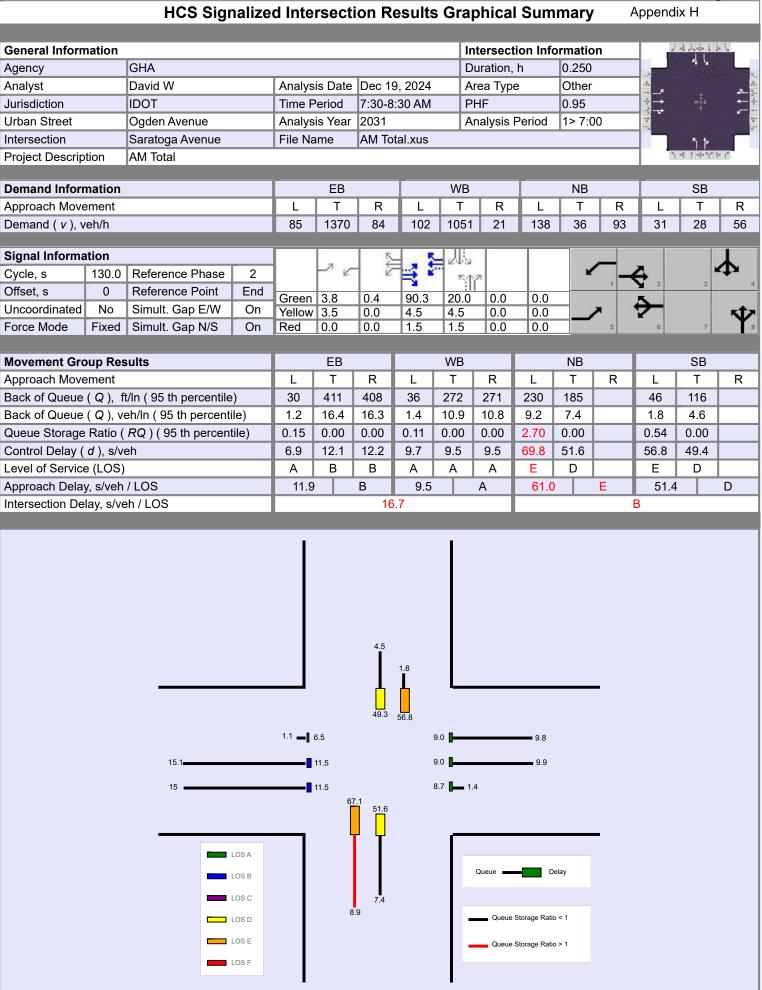
ORD 2025-10692 Page 106 of 167

HC	S Signa	lized	Inters	sectio	n In	put Da	ta		ı	Append		ge 100 0
										_		
General Information					_	Intersect		-			4741) L
Agency GHA	1		1= .			Duration,		0.250		-		
Analyst David W			Dec 1		\rightarrow	Area Typ	e	Other				A-
Jurisdiction IDOT	Time I			3:30 AM	_	PHF		0.95			₩ . † E	← 4
Urban Street Ogden Avenue		sis Yea				Analysis	Period	1> 7:0	00	7		ir c
Intersection Saratoga Avenue	File N	ame	AM To	tal.xus							7 1	
Project Description AM Total		_	_	_	_			_	_	ľ	4 1 4 Y	F (*
Demand Information	$\neg \neg$	EB		7	WI	 В		NB		T	SB	
Approach Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh/h	85	1370	84	102	105	51 21	138	36	93	31	28	56
				.								
Signal Information	_	7 0	_ }	1.7 3	= 21	Zi			_	,		人
Cycle, s 130.0 Reference Phase 2			_ E	1	্ত	17		- S-	1	♦ 2	3	4
Offset, s 0 Reference Point En	Green		0.4	90.3	20.		0.0			<u> </u>		
Uncoordinated No Simult. Gap E/W Or	TOHOW	_	0.0	4.5	4.5		0.0			7		Ŷ
Force Mode Fixed Simult. Gap N/S Or	n Red	0.0	0.0	1.5	1.5	0.0	0.0		5	6	7	8
Traffic Information	_	EB			WB			NB			SB	
Approach Movement	L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h	85	1370	84	102	1051	21	138	36	93	31	28	56
Initial Queue (Q _b), veh/h	0	0	0	0	0	0	0	0	0	0	0	0
Base Saturation Flow Rate (s₀), veh/h	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Parking (N _m), man/h		None			None	e		None			None	
Heavy Vehicles (Phv), %	0	0		0	0		0	0		0	0	
Ped / Bike / RTOR, /h	0	0	0	0	0	0	0	0	0	0	0	0
Buses (Nb), buses/h	0	0	0	0	0	0	0	0	0	0	0	0
Arrival Type (<i>AT</i>)	3	3	3	3	3	3	3	3	3	3	3	3
Upstream Filtering (I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (W), ft	12.0	12.0		12.0	12.0		12.0	12.0		12.0	12.0	\Box
Turn Bay Length, ft	200	0		315	0		85	0		85	0	
Grade (Pg), %	\neg	0			0			0			0	
Speed Limit, mi/h	35	35	35	35	35	35	35	35	35	35	35	35
Phase Information	EBI		EBT	WBI	_	WBT	NBL	_	NBT	SBL		SBT
Maximum Green (<i>Gmax</i>) or Phase Split, s	13.0		91.0	13.0	_	91.0			26.0		_	26.0
Yellow Change Interval (Y), s	3.5	_	4.5	3.5		4.5			4.5		_	4.5
Red Clearance Interval (Rc), s	0.0		1.5	0.0		1.5			1.5			1.5
Minimum Green (<i>Gmin</i>), s Start-Up Lost Time (<i>It</i>), s	2.0		15 2.0	2.0	+	15 2.0	2.0		2.0	2.0	-	2.0
Extension of Effective Green (e), s	2.0		2.0	2.0	-	2.0	2.0		2.0	2.0		2.0
Passage (PT), s	2.0		2.0	2.0	-	2.0	2.0		2.0	2.0		2.0
Recall Mode	Off	_	Min	Off	_	Min			Off			Off
Dual Entry	No	_	Yes	No	_	Yes			Yes			Yes
Walk (<i>Walk</i>), s			0.0			0.0		_	0.0			0.0
Pedestrian Clearance Time (<i>PC</i>), s			0.0			0.0			0.0			0.0
Multimodal Information		EB			WB			ND			C.D.	
85th % Speed / Rest in Walk / Corner Radius	0.0	EB No	25.0	0.0	No	25.0	0.0	NB No	25.0	0.0	SB No	25.0
Walkway / Crosswalk Width / Length, ft	9.0	12.0	0.0	9.0	12.0	_	9.0	12.0	0.0	9.0	12.0	0.0
Street Width / Island / Curb, ft	0.0	0	No	0.0	0	No	0.0	0	No	0.0	0	No
Width Outside / Bike Lane / Shoulder, ft	12.0	5.0	2.0	12.0	5.0	2.0	12.0	5.0	2.0	12.0	5.0	2.0
,	12.0											

Generated: 12/19/2024 9:16:52 AM

Page 107 of 167 ORD 2025-10692

		HCS	S Sigr	nalize	d Int	ersect	ion R	esu	Its S	um	mary		,	Append	lix H	
General Inform	ation								Intore	socti	ion Info	rmatic	n e		4 74 1	Ja la
	iation	GHA							Durat			0.250			41	
Agency		David W		Analys	io Dot	e Dec 1	0. 2024					Other				E.
Analyst Jurisdiction		IDOT		Time F			9, 2024 3:30 AM		Area PHF	туре	,	0.95			w∳E	÷
Urban Street		Ogden Avenue		Analys			5.30 AIVI			voio [Period	1> 7:0	20			<u>-</u>
Intersection		Saratoga Avenue		File Na			otal.xus		Analy	уыь г	enou	1 / / .	JU		2 0	-
Project Descrip	tion	AM Total		File IN	ame	AWI	otal.xus							-	া † বিক্স	7
T Toject Descrip	lion	AW Iotal														
Demand Inform	nation				EB			V	/B			NB			SB	
Approach Move	ement			L	Т	R	L		Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			85	1370	84	102	10	51	21	138	36	93	31	28	56
Signal Informa	tion				1	1	v		E		_		5			
		Reference Phase		1	1	$A = \frac{2}{3}$	≒ ,	200	l'a				_	я		本
Cycle, s Offset, s	130.0		2 End	1				2	542			5.5	1	♀ 2	3	4
	et, s 0 Reference Point E pordinated No Simult. Gap E/W (e Mode Fixed Simult. Gap N/S (er Results gned Phase e Number se Duration, s nge Period, (Y+Rc), s Allow Headway (MAH), s			Green		0.4	90.3	20		0.0	0.0		_	<u> </u>		F
Force Mode	ordinated No Simult. Gap E/W Cer Results gned Phase e Number se Duration, s nge Period, (Y+Rc), s Allow Headway (MAH), s ue Clearance Time (gs), s			Yellow	_	0.0	4.5 1.5	4. 1.		0.0	0.0		^		7	Y.
Force wode	Mode Fixed Simult. Gap N/S Results ned Phase Number Duration, s ge Period, (Y+Rc), s Allow Headway (MAH), s e Clearance Time (gs), s			Red	0.0	0.0	1.5	1.	5 (0.0	10.0		5	6	1	8
Timer Results	r Results gned Phase Number e Duration, s age Period, (Y+R c), s Allow Headway (MAH), s ale Clearance Time (g s), s an Extension Time (g e), s			EBI		EBT	WB	L	WB	Т	NBL		NBT	SBI		SBT
Assigned Phase	е			5		2	1		6				8			4
Case Number				1.1		4.0	1.1		4.0				6.0			6.0
Phase Duration	, S			7.3		96.3	7.7		96.7	7			26.0			26.0
Change Period,	, (Y+R	c), S		3.5		6.0	3.5		6.0				6.0			6.0
	x Allow Headway (<i>MAH</i>), s eue Clearance Time (<i>g</i> _s), s					0.0	3.1	_	0.0	_			3.3			3.3
	, z ,						4.2						22.0			14.8
	en Extension Time (g $_{ extstyle e}$), s				_	0.0	0.1	-	0.0	_			0.0			0.4
	se Call Probability				5		0.98	_				_	1.00			1.00
Max Out Probal	·				3		0.06	5	_	_	_		1.00			0.28
Movement Gro	c Out Probability vement Group Results				EB			WI	3			NB			SB	
Approach Move		74.1.0			T	R	L	T	_	۲	L	T	R	L	T	R
Assigned Move				5	2	12	1	6	_	6	3	8	18	7	4	14
Adjusted Flow F), veh/h		89	771	760	107	566	3 56	62	145	136		33	88	
		ow Rate (s), veh/h/l	n	1810	1900	1861	1810	190	0 18	887	1329	1682		1273	1696	
Queue Service	Time (g	g s), S		1.9	27.1	27.4	2.2	16.	7 16	3.7	14.0	9.7		3.1	6.0	
Cycle Queue C	learanc	e Time (<i>g c</i>), s		1.9	27.1	27.4	2.2	16.	7 16	3.7	20.0	9.7		12.8	6.0	
Green Ratio (g	/C)			0.72	0.69	0.69	0.73	0.7	0 0.7	70	0.15	0.15		0.15	0.15	
Capacity (c), v	eh/h			389	1320	1292	281	132	6 13	17	198	259		157	261	
Volume-to-Capa				0.230	0.584		0.382	0.42	_	$\overline{}$	0.733	0.525		0.208	0.339	
		t/In (95 th percentile	•	30	411	408	36	272	_	-	230	185		46	116	
		eh/ln (95 th percent		1.2	16.4		1.4	10.	_	8.0	9.2	7.4		1.8	4.6	
		RQ) (95 th percent	ule)	0.15	0.00	0.00	0.11	0.0	_	-	2.70	0.00		0.54	0.00	
Uniform Delay (`			6.8	10.2	10.3	9.3	8.4	_	\rightarrow	58.1	50.6		56.5	49.1	
	cremental Delay (d 2), s/veh			0.1	0.0	0.0	0.3	0.0		.0	11.6 0.0	0.0		0.2	0.3	
	tial Queue Delay (d 3), s/veh ontrol Delay (d), s/veh			6.9	12.1	12.2	9.7	9.5	_	\rightarrow	69.8	51.6		56.8	49.4	
Level of Service				A	12.1 B	B	9.7 A	9.c	_	.5 A	E	D		50.8 E	49.4 D	
Approach Delay				11.9		В	9.5	_	A		61.0		E	51.4		D
Intersection De				,,,,			6.7		- ,		51.0			В		
Multimodal Re					EB			WI				NB			SB	
Pedestrian LOS				1.87	_	В	1.87	\rightarrow	В	_	2.31		В	2.31		В
Bicycle LOS Sc	ore / LC	JS		1.82	<u>'</u>	В	1.5	1	В		0.95		Α	0.69)	Α


Generated: 12/19/2024 9:16:52 AM

ORD 2025-10692 Page 108 of 167

	HCS S	ignali	ized i	nters	ection	Inter	medi	ate Val	ues		Appen	H XIC	
General Information							Inte	rsection	Inform	ation		기세가하다	, J. L.
Agency	GHA						\rightarrow	ation, h		250		46	
Analyst	David W		Analysis	: Date [Dec 19, 1	2024		a Type		her	4		;
Jurisdiction	IDOT		ime Pe	_	7:30-8:30		PHF		0.9			w E	÷
Urban Street	Ogden Avenue		nalysis		2031	O 7 tivi		lysis Perio		7:00	-() - -) 각		-
Intersection	Saratoga Avenue		ile Nar	_	AM Total	Lxus	7 1110	1,010 1 0111	- T	7.00		K &	
Project Description	AM Total										'	ነ 4 ሰቀኘ	7 77
Demand Information	<u>, </u>	7		EB			WB			NB	7	SB	
Approach Movement		_	L	T	R	L	T	R	L T	T R	L	T	R
Demand (v), veh/h		\rightarrow	85	1370	84	102	1051			36 93	_	28	56
Bernaria (v), veriiri				1070	01	102	1001		00		01	20	00
Signal Information					2		الع						T
Cycle, s 130.0	Reference Phase	2	-	2	è	4	5.42			-	↔ .		STZ
Offset, s 0	Reference Point	End	Green	3.8	0.4	90.3	20.0	0.0	0.0	1	Y Z	3	
Uncoordinated No	Simult. Gap E/W		ellow/			4.5			0.0	<i>></i>	→		*
Force Mode Fixed	d Simult. Gap N/S	On F	Red	0.0	0.0	1.5	1.5	0.0	0.0	5	6	7	
Saturation Flow / De	elav	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Lane Width Adjustme		1.000				1.000		1.000	1.000	-	1.000	1.000	1.000
Heavy Vehicles and 0		1.000	_		-	1.000		_	1.000		1.000	1.000	
Parking Activity Adjus	· · · · ·	1.000	_			1.000			1.000		1.000	1.000	1.000
Bus Blockage Adjustr	,	1.000	1.000		_	1.000	_		1.000		1.000	1.000	1.000
Area Type Adjustmen	· ,	1.000	1.000			1.000			1.000		1.000	1.000	1.000
Lane Utilization Adjus	<u>`</u>	1.000	1.000	1.000	1.000	1.000			1.000	1.000	1.000	1.000	1.000
Left-Turn Adjustment	, ,	0.952	0.000	1	0.952	0.000		0.700	0.000		0.670	0.000	$\overline{}$
Right-Turn Adjustmer	nt Factor (<i>f</i> _{RT})		0.979	0.979		0.993	0.993	3	0.885	0.885		0.893	0.893
Left-Turn Pedestrian	Adjustment Factor (f _{Lpb})	1.000			1.000			1.000			1.000		
Right-Turn Ped-Bike	Adjustment Factor (<i>f</i> _{Rpb})			1.000			1.000			1.000			1.000
Work Zone Adjustmen	nt Factor (f _{wz})	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
DDI Factor (fddi)		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Left-Turn Prot. CAV A	· · · ·	1.00			1.00								1
Left-Turn Perm. CAV								1.00			1.00		1
Movement Saturation		1810	3544		1810	3712	_	1329	469	1212	1273	565	1131
	s Arriving on Green (P)	0.03	0.69	0.69	0.03	0.70	0.70		0.15	0.15	0.15	0.15	0.15
Incremental Delay Fa	ictor (k)	0.04	0.50	0.50	0.04	0.50	0.50	0.25	0.06	_	0.04	0.04	
Signal Timing / Mov	ement Groups	EB	L	EBT/R	WB	BL	WBT/R	NB	L	NBT/R	SBI		SBT/R
Lost Time (t _L)		3.5	5	6.0	3.5	5	6.0			6.0			6.0
Green Ratio (g/C)		0.7	2	0.69	0.7	3	0.70			0.15			0.15
Permitted Saturation	Flow Rate (s _ρ), veh/h/ln	50	7	0	345	5	0			1329			1273
Shared Saturation Flo	ow Rate (ssh), veh/h/ln												
Permitted Effective G	reen Time (g_p) , s	90.	3	0.0	90.	3	0.0			20.0			20.0
Permitted Service Tin	1- /	72.	1	0.0	62.		0.0	_		14.0			10.3
Permitted Queue Ser	(3.).	3.9			12.			\bot		14.0			3.1
Time to First Blockag	(5)	0.0)	0.0	0.0)	0.0	-		0.0		\perp	0.0
	Before Blockage (gfs), s							-				_	
	ration Flow (s _R), veh/h/ln							-				\perp	
	tive Green Time (g _R), s	_						+					
Multimodal			EB			WB		-	NB			SB	
Pedestrian F _w / F _v		1.19		0.000	1.19		0.000	1.55	_	0.000	1.55		0.000
		0.00	00	0.072	0.00	00	0.071	0.00	0	0.154	0.00	0	0.154
Pedestrian F _s / F _{delay}			_			_		1	_			$\overline{}$	
Pedestrian F _s / F _{delay} Pedestrian M _{corner} / M Bicycle c _b / d _b	lcw	0.0 1388		6.07	0.0 1395		5.93	0.00 307.6	_	46.54	0.00 307.6		46.54

13

ORD 2025-10692 Page 109 of 167

Generated: 12/19/2024 9:16:52 AM

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ---

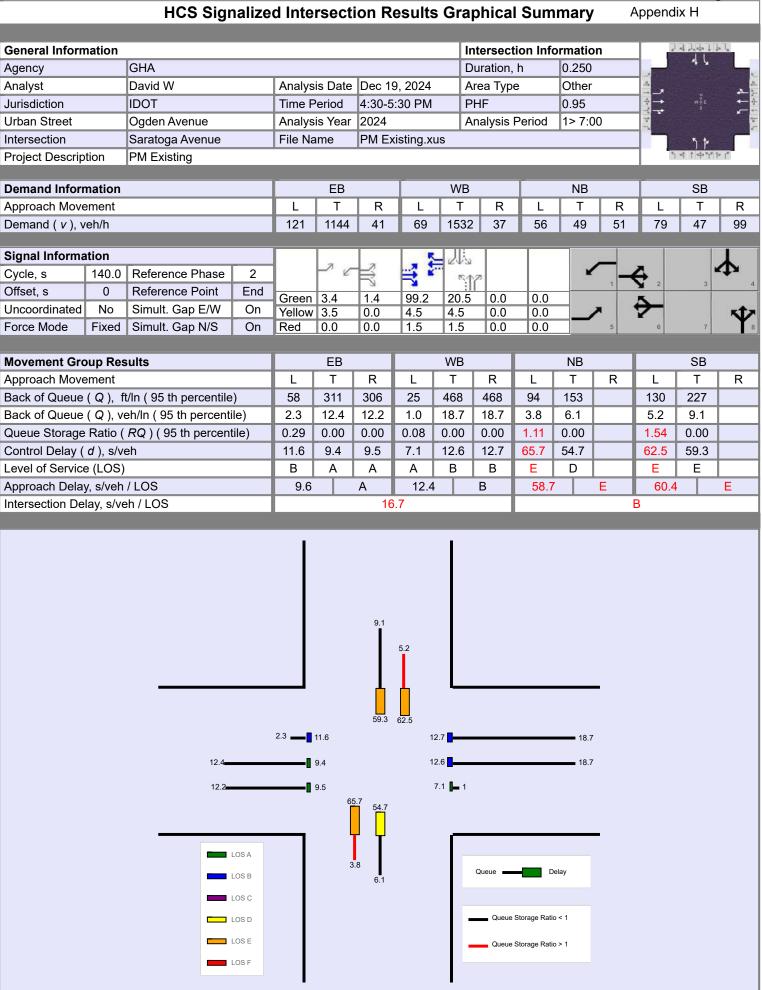
Copyright © 2024 University of Florida, All Rights Reserved.

HCS™ Streets Version 2024 AM Existing.xus

ORD 2025-10692 Page 111 of 167

KD 2023-10092	HCS	Signa	lized	Inters	sectio	n In	put Da	ta		,	Append		ge III o
											,		
General Information	_						Intersec		-			4741	pa l _a
Agency	GHA						Duration,		0.250				
Analyst	David W	_		Dec 1			Area Typ	е	Other				<u> </u>
Jurisdiction	IDOT	Time F			:30 PM		PHF		0.95		☆	w 	←
Urban Street	Ogden Avenue	Analys	is Year	2024			Analysis	Period	1> 7:0	00	7		\$ 2
Intersection	Saratoga Avenue	File Na	ame	PM E	kisting.x	us						14	
Project Description	PM Existing										15	4 1 4 Y	7
Demand Information			EB		7	W	В		NB		T	SB	
Approach Movement		L	Т	R	L	Т	-	L	Т	R	L	Т	R
Demand (v), veh/h		121	1144		69	153	_	56	49	51	79	47	99
							-						
Signal Information	T T	-	2	_ 7	71		ভ			_	_		\downarrow
Cycle, s 140.0	Reference Phase 2	-	_ &	R	=	15	17		K		€ 2	3	4
Offset, s 0	Reference Point End	Green	3.4	1.4	99.2	20.	.5 0.0	0.0		i	Ā.		
Uncoordinated No	Simult. Gap E/W On	Yellow	-	0.0	4.5	4.5		0.0		>	7		V
Force Mode Fixed	Simult. Gap N/S On	Red	0.0	0.0	1.5	1.5	0.0	0.0		5	6	7	8
Traffic Information			EB			WB			NB			SB	
Approach Movement		1	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h		121	1144	41	69	1532		56	49	51	79	47	99
Initial Queue (Q _b), veh	/h	0	0	0	0	0	0	0	0	0	0	0	0
Base Saturation Flow		1900	1900	1900	1900	1900	-	1900	1900	1900	1900	1900	1900
Parking (<i>N_m</i>), man/h	1 (00), 1011/11	1000	None	1000	1000	None		1000	None	1000	1000	None	1000
Heavy Vehicles (<i>Phv</i>),	%	0	1		0	0		0	0		0	0	
Ped / Bike / RTOR, /h	70	0	0	0	0	0	0	0	0	0	0	0	0
Buses (N _b), buses/h		0	0	0	0	0	0	0	0	0	0	0	0
Arrival Type (AT)		3	3	3	3	3	3	3	3	3	3	3	3
Upstream Filtering (/)		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (W), ft		12.0	12.0		12.0	12.0		12.0	12.0		12.0	12.0	
Turn Bay Length, ft		200	0		315	0		85	0		85	0	
Grade (<i>Pg</i>), %			0		0.0	0			0			0	
Speed Limit, mi/h		35	35	35	35	35	35	35	35	35	35	35	35
Phase Information		EBL		EBT	WBI	_	WBT	NBL	- '	NBT	SBL		SBT
Maximum Green (Gmax	<u> </u>	13.0)	100.0	13.0	_	100.0			27.0			27.0
Yellow Change Interva	, ,	3.5	_	4.5	3.5	_	4.5			4.5			4.5
Red Clearance Interva		0.0	_	1.5	0.0	-	1.5		_	1.5			1.5
Minimum Green (Gmin Start-Up Lost Time (It)	,	2.0		15 2.0	2.0		15 2.0	2.0		2.0	2.0		2.0
Extension of Effective		2.0		2.0	2.0	-	2.0	2.0		2.0	2.0	_	2.0
Passage (PT), s	Order (6), 5	2.0		2.0	2.0	_	2.0	2.0		2.0	2.0		2.0
Recall Mode		Off	_	Min	Off	-	Min			Off			Off
Dual Entry		No		Yes	No		Yes			Yes			Yes
Walk (<i>Walk</i>), s				0.0			0.0			0.0			0.0
Pedestrian Clearance	Time (<i>PC</i>), s			0.0			0.0			0.0			0.0
									,				
Multimodal Information		0.0	EB	25.0	0.0	WB	_	0.0	NB	25.0	0.0	SB	25.0
·	Walk / Corner Radius	0.0	No 12.0	25.0	0.0	No 12.0	25.0	0.0	No 12.0	25.0	0.0	No 12.0	25.0
Walkway / Crosswalk \ Street Width / Island /		9.0	12.0	0.0 No	9.0	12.0	0.0 No	9.0	12.0	0.0 No	9.0	12.0 0	0.0 No
Width Outside / Bike L		12.0	5.0	2.0	12.0	5.0	2.0	12.0	5.0	2.0	12.0	5.0	2.0
Pedestrian Signal / Oc		No		0.50	No		0.50	No		0.50	No		0.50
	_												

Page 112 of 167 ORD 2025-10692


		HCS	S Sigr	nalize	d Inte	ersect	ion R	esu	lts	Sum	mary	,	,	Append	ix H	
	4.														시사하	L. T
General Inform	nation	0114							-		ion Info	-				* · ·
Agency		GHA				- ID 4	0 0004		_	ıration,		0.250		-		
Analyst		David W				e Dec 1			-	еа Тур	e	Other			w [†]	<u></u>
Jurisdiction		IDOT		Time F			5:30 PM		PH			0.95			W+=	F
Urban Street		Ogden Avenue				r 2024			An	alysis	Period	1> 7:0)()	7		-
Intersection		Saratoga Avenue		File Na	ame	PM E	xisting.x	us						- 1	ን ነ	2.4
Project Descrip	tion	PM Existing													4 1 4 4	P [
Demand Inform	nation				EB		T	٧	VB		T	NB			SB	
Approach Move	ement			L	Т	R	L	T .	Т	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			121	1144	41	69	15	532	37	56	49	51	79	47	99
Signal Informa		Γ			7	_ 7	7	2	is a				_	_		λ
Cycle, s	140.0		2		_ 2	R		9	517	5		K		€ 2	3	4
Offset, s	0	Reference Point	End	Green	3.4	1.4	99.2	20	0.5	0.0	0.0					
Uncoordinated		Simult. Gap E/W	On	Yellow	-	0.0	4.5	4.		0.0	0.0		<i>></i>	~		V
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	1.5	1.	.5	0.0	0.0		5	6	7	8
Timer Results				EBL		EBT	WB		W	/BT	NBL		NBT	SBI		SBT
Assigned Phase	е			5		2	1	_		6	INDE		8	OB.		4
Case Number				1.1		4.0	1.1			1.0			6.0			6.0
Phase Duration	n. S			8.3		106.6	6.9	\rightarrow)5.2		_	26.5			26.5
Change Period		c). s		3.5		6.0	3.5	\rightarrow		6.0		_	6.0			6.0
Max Allow Head		·		3.1		0.0	3.1	\rightarrow		0.0		_	3.3			3.3
Queue Clearan				4.7		0.0	3.6	\rightarrow					20.4			18.3
Green Extension		,		0.1		0.0	0.0	\rightarrow	0	0.0		_	0.1			0.3
Phase Call Pro		(0)		0.99	,		0.94	\rightarrow				_	1.00			1.00
Max Out Proba	bility			0.07	,		0.0	1					1.00			1.00
Movement Gro		sults			EB		<u> </u>	W		_		NB		<u> </u>	SB	
Approach Move				L	T	R	L	T	\rightarrow	R	L	T	R	L	T	R
Assigned Move		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		5	2	12	1	6	_	16	3	8	18	7	4	14
Adjusted Flow I		,		127	627	620	73	82	\rightarrow	824	59	105		83	154	\vdash
Queue Service		ow Rate (s), veh/h/l	ın	1810 2.7	1885 19.6	1862	1810	190 31.	_	1884 31.7	1253 6.5	1740 7.7		1309 8.6	1693 11.9	
		e Time (<i>g c</i>), s		2.7	19.6	19.7	1.6	31.	_	31.7	18.4	7.7		16.3	11.9	
Green Ratio (g		e fille (g c), s		0.74	0.72	0.72	0.73	0.7	_	0.71	0.15	0.15		0.15	0.15	
Capacity (c), v				261	1355	1338	351	134	_	1336	128	255		171	248	
Volume-to-Capa		atio (X)		0.487	0.463		0.207	0.6	_	0.617	0.461	0.414		0.486	0.621	
		t/ln (95 th percentile)	58	311	306	25	46	\rightarrow	468	94	153		130	227	
		eh/ln (95 th percent	-	2.3	12.4	12.2	1.0	18.	_	18.7	3.8	6.1		5.2	9.1	
		RQ) (95 th percen	-	0.29	0.00	0.00	0.08	0.0	_	0.00	1.11	0.00		1.54	0.00	
Uniform Delay ((<i>d</i> ₁), s	/veh		11.1	8.3	8.3	6.9	10.	.5	10.5	64.8	54.3		61.7	56.1	
Incremental De	lay (d 2), s/veh		0.5	1.1	1.2	0.1	2.	1	2.1	1.0	0.4		0.8	3.2	
Initial Queue De		·		0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0		0.0	0.0	
Control Delay (11.6	9.4	9.5	7.1	12.	$\overline{}$	12.7	65.7	54.7		62.5	59.3	
Level of Service				В	Α	A	Α	В		В	Е	D		Е	E	
Approach Delay				9.6		Α	12.4	1	ŀ	В	58.7		Е	60.4		Е
Intersection De	lay, s/ve	eh / LOS				16	5.7							В		
Multimodal Re	sulte				EB			W	R			NB			SB	
Pedestrian LOS		/LOS		1.87		В	1.87	_		В	2.31		В	2.31		В
Bicycle LOS Sc				1.62	_	В	1.9	\rightarrow		В	0.76		A	0.88	_	A
,																

ORD 2025-10692 Page 113 of 167

		HCS S	ign	aliz	zed l	nters	ectior	ı Inte	ern	nedia	te Val	ues			Append	H xib	
General Inform	nation									Inter	section	Infor	mati	ion			Į Įs Ų
Agency	iation	GHA								-	tion, h	-	0.25			41	
Analyst		David W		Ar	nalvsis	Date	Dec 19,	2024		Area		_	Othe		_3 _5		
Jurisdiction		IDOT		-	me Pe	_	4:30-5:3			PHF	.,,,,	\rightarrow	0.95			w E	. <u>X</u> .
Urban Street		Ogden Avenue		-	nalysis	_	2024	0		_	/sis Peri	_	1> 7		-1		-
Intersection		Saratoga Avenue		-	le Nam	_	PM Exis	tina.xı	us		,					5.1	
Project Descrip	tion	PM Existing														গ্ৰ † 💠	777
Demand Inform	nation					EB			V	VB			NE		7	SB	
Approach Move				Н	L	T	R	L	_	T	R	L	T	R		T	R
Demand (v), v				-		1144	41	69	-	_	-	56	49	_	79	47	
Domaila (v), v	011/11									502				01	, 0		00
Signal Informa	ition						tier:	_ 5		- E							
Cycle, s	140.0	Reference Phase	2			16	≓ I	4		542				_	4		4
Offset, s	0	Reference Point	End	Gr	reen 3	3.4	1.4	99.2	20	:11	0.0	0.0		1	Y 2	3	
Uncoordinated	No	Simult. Gap E/W	On		ellow			4.5	4.			0.0		<i>></i>	→		ST.
Force Mode	Fixed	Simult. Gap N/S	On	Re	ed (0.0	0.0	1.5	1.	.5 (0.0	0.0		5	6	7	
Saturation Flo	w / Dela	av			Т	R	L	Т	T	R	L	Т	-	R	L	Т	R
Lane Width Adj		•	1.0	\rightarrow	1.000				\rightarrow	1.000	1.000	1.0	\rightarrow	1.000	1.000	1.000	
		ade Factor (f _{HVg})	1.0	_	0.992				_	1.000	1.000	_	\rightarrow	1.000	1.000	1.000	_
Parking Activity			1.0	\rightarrow	1.000	\leftarrow			\rightarrow	1.000	1.000	_	_	1.000	1.000	1.000	
Bus Blockage A	djustme	ent Factor (fbb)	1.0	00	1.000	1.000	1.000	1.00	00	1.000	1.000	1.0	00	1.000	1.000	1.000	1.000
Area Type Adju	_	· ,	1.0	00	1.000	1.000	1.000	1.00	00	1.000	1.000	1.0	00	1.000	1.000	1.000	1.000
Lane Utilization	Adjustr	nent Factor (fLU)	1.0	00	1.000	1.000	1.000	1.00	00	1.000	1.000	1.0	00	1.000	1.000	1.000	1.000
Left-Turn Adjus	tment F	actor (f _{LT})	0.9	52	0.000		0.952	0.00	00		0.659	0.0	00		0.689	0.000	,
Right-Turn Adju	stment	Factor (<i>f</i> _{RT})			0.988	0.988		0.99	92	0.992		0.9	16	0.916		0.891	0.891
Left-Turn Pedes	strian Ad	djustment Factor (fLpb	1.0	00			1.000				1.000				1.000		
Right-Turn Ped	-Bike Ad	djustment Factor (<i>f</i> _{Rpb}				1.000				1.000				1.000			1.000
Work Zone Adjı	ustment	Factor (fwz)	1.0	00	1.000	1.000	1.000	1.00	00	1.000	1.000	1.0	00	1.000	1.000	1.000	1.000
DDI Factor (fdd	<u>') </u>		1.0	00	1.000	1.000	1.000	1.00	00	1.000	1.000	1.0	00	1.000	1.000	1.000	1.000
		. Factor (fcav,prot)	1.0	00			1.00		_								4
		dj. Factor (<i>f</i> cav,perm)	┺	_			_	<u> </u>	_		1.00	_			1.00		
		low Rate (s), veh/h	18	\rightarrow	3617	130	1810	369	_	89	1253	85	$\overline{}$	888	1309	545	1148
		Arriving on Green (P)	0.0	\rightarrow	0.72	0.72	0.02	0.7	\rightarrow	0.71	0.15	0.1	$\overline{}$	0.15	0.15	0.15	
Incremental De	lay Fact	or (<i>k</i>)	0.0)4	0.50	0.50	0.04	0.5	0	0.50	0.04	0.0	04		0.04	0.14	
Signal Timing	/ Mover	ment Groups	Т	EBL	. 1	EBT/R	WE	3L	W	BT/R	NB	L	N	BT/R	SBL	-	SBT/R
Lost Time (t∠)				3.5		6.0	3.5	5	(6.0				6.0			6.0
Green Ratio (g/	(C)).74		0.72	0.7	3	C).71			(0.15			0.15
Permitted Satur	ration Fl	ow Rate (<i>s₀</i>), veh/h/lr		307		0	45	3		0			1	253			1309
Shared Saturat	ion Flow	Rate (ssh), veh/h/ln															
Permitted Effect	tive Gre	en Time (g _p), s		9.2		0.0	99.	2	(0.0			2	20.5			20.5
Permitted Servi		1- /	_	37.5		0.0	78.	9	(0.0				8.6			12.8
Permitted Queu		(3: /:	_	22.5			3.9	\rightarrow						6.5			8.6
Time to First Bl		(C):		0.0		0.0	0.0)	(0.0				0.0		_	0.0
		efore Blockage (gfs), s	_		_											_	
		tion Flow (s _R), veh/h/l	_					_									
	Effectiv	ve Green Time (gR), s	-				1										
Multimodal					EB			W				N				SB	
Pedestrian F _w /			-	.198		0.000	1.19			.000	1.55			.000	1.55	_	0.000
Pedestrian F _s /			-	.000	_	0.069	0.00	_	0.	.071	0.00	_	0	.158	0.00	_	0.158
Pedestrian Mcor	ner / M cw	,	-	0.00			0.0				0.0				0.00	_	
Bicycle <i>c_b</i> / <i>d_b</i>			_	37.6	_	5.53	1417			5.93	292.			1.02	292.5		51.02
Bicycle F _w / F _v			-	3.64		1.13	-3.6 18	64	1	.42	-3.6	64	(0.27	-3.64	4	0.39

18

ORD 2025-10692 Page 114 of 167

Generated: 12/19/2024 10:06:17 AM

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ---

Copyright © 2024 University of Florida, All Rights Reserved.

HCS™ Streets Version 2024 PM Existing.xus

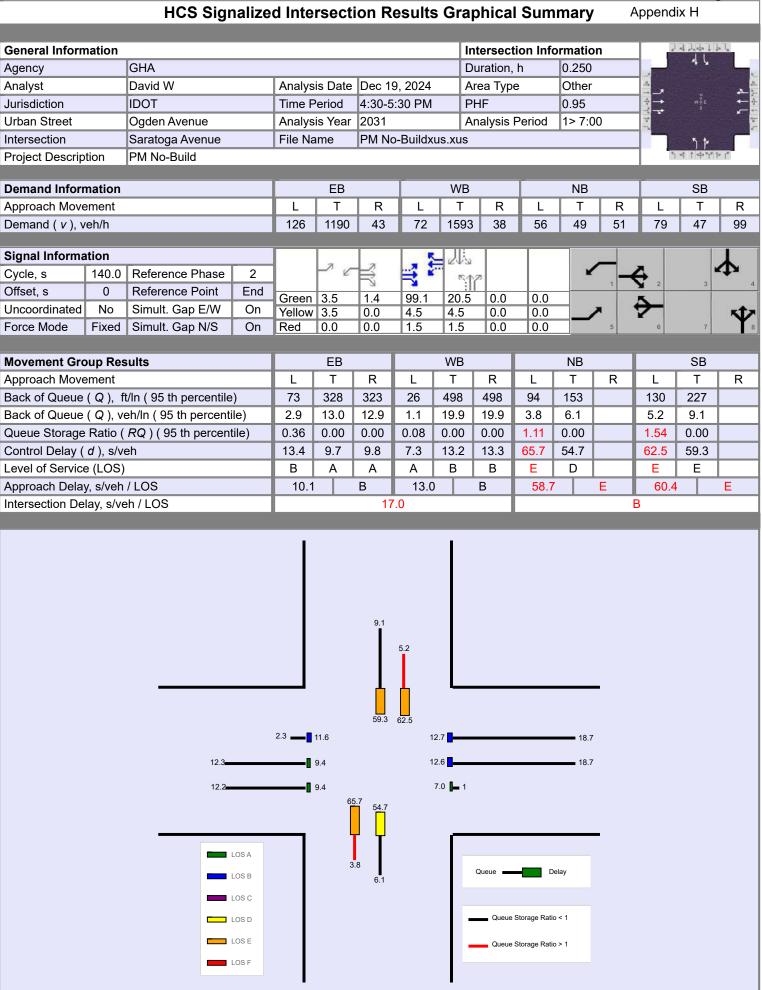
ORD 2025-10692 Page 116 of 167

		HCS :	Signa	lized	Inters	sectio	n In	put Da	ta		/	Append	ix H	
O - m - mal limfo mos attle m								14		4! .			4,441.	. I.
General Information	TO.14							Intersec				Í	ΑĻ	
Agency	GHA				- In 1			Duration,		0.250		-		
Analyst	David W				Dec 1		_	Area Typ	е	Other			₩ ₩‡ε	÷ [
Jurisdiction	IDOT		Time F			:30 PM		PHF		0.95			W † E	Z
Urban Street	Ogden Avenue		Analys					Analysis	Period	1> 7:0)0	-		¥
Intersection	Saratoga Avenue		File Na	ame	PM No	o-Buildx	us.xu	S					ን ጅ	
Project Description	PM No-Build	-	-	-	-	-		_	-	-	-		4 1 4 7	7
Demand Information				EB			W	В		NB		T	SB	
Approach Movement			L	Т	R	L	T	R	L	T	R	L	Т	R
Demand (v), veh/h			126	1190	43	72	159	93 38	56	49	51	79	47	99
Cianal Information				_	7			:	_					
Signal Information	Deference Dhase			7 ,	-2			l'a			_	,		本
Cycle, s 140.0	Reference Phase	2		E	$ \exists $		्रह	17		S-5	1	♦ 2	3	4
Offset, s 0	Reference Point	End	Green		1.4	99.1	20		0.0					
Uncoordinated No	Simult. Gap E/W	On	Yellow	-	0.0	4.5	4.5		0.0			7		Ŷ
Force Mode Fixed	Simult. Gap N/S	On	Red	0.0	0.0	1.5	1.5	0.0	0.0	_	5	6	7	8
Traffic Information				EB			WE	3		NB			SB	
Approach Movement			L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), veh/h			126	1190	43	72	1593		56	49	51	79	47	99
Initial Queue (Qb), veh	/h		0	0	0	0	0	0	0	0	0	0	0	0
Base Saturation Flow F			1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Parking (N _m), man/h	(//			None			Non			None			None	
Heavy Vehicles (PHV),	%		0	1		0	0		0	0		0	0	
Ped / Bike / RTOR, /h			0	0	0	0	0	0	0	0	0	0	0	0
Buses (N _b), buses/h			0	0	0	0	0	0	0	0	0	0	0	0
Arrival Type (AT)			3	3	3	3	3	3	3	3	3	3	3	3
Upstream Filtering (I)			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (W), ft			12.0	12.0		12.0	12.0		12.0	12.0		12.0	12.0	
Turn Bay Length, ft			200	0		315	0		85	0		85	0	
Grade (Pg), %				0			0			0			0	
Speed Limit, mi/h			35	35	35	35	35	35	35	35	35	35	35	35
Phase Information) Db 01:4		EBL	_	EBT	WBI	-	WBT	NBL	_	NBT	SBL	_	SBT
Maximum Green (<i>G_{max}</i> Yellow Change Interva	, , ,		13.0 3.5	_	100.0 4.5	13.0 3.5	_	100.0 4.5		_	27.0 4.5	_		27.0 4.5
Red Clearance Interva	. ,		0.0	_	1.5	0.0	_	1.5		_	1.5	_	_	1.5
Minimum Green (Gmin)			3	_	1.5	3	\rightarrow	1.5			6			6
Start-Up Lost Time (It)			2.0	_	2.0	2.0		2.0	2.0		2.0	2.0		2.0
Extension of Effective			2.0		2.0	2.0	-	2.0	2.0	_	2.0	2.0	_	2.0
Passage (PT), s			2.0		2.0	2.0	_	2.0	5		2.0			2.0
Recall Mode			Off		Min	Off	_	Min			Off			Off
Dual Entry			No		Yes	No	_	Yes			Yes			Yes
Walk (<i>Walk</i>), s					0.0			0.0			0.0			0.0
Pedestrian Clearance	Time (<i>PC</i>), s				0.0			0.0			0.0			0.0
Multimodel Informati				ED.			\A/D			ND			CD	
Multimodal Information 85th % Speed / Rest in		IIS	0.0	EB No	25.0	0.0	WB No	_	0.0	NB No	25.0	0.0	SB No	25.0
Walkway / Crosswalk V		40	9.0	12.0	0.0	9.0	12.0	_	9.0	12.0	0.0	9.0	12.0	0.0
Street Width / Island / 0			0.0	0	No	0.0	0	No No	0.0	0	No.0	0.0	0	No
Width Outside / Bike La			12.0	5.0	2.0	12.0	5.0		12.0	5.0	2.0	12.0	5.0	2.0
Pedestrian Signal / Oc	· · · · · · · · · · · · · · · · · · ·		No		0.50	No		0.50	No		0.50	No		0.50

Generated: 12/19/2024 9:39:36 AM

Page 117 of 167 ORD 2025-10692

		HCS	S Sigr	nalize	d Int	ersect	ion R	esu	Its S	Sum	mary	•		Append	H xil	
General Inform	ation								Into	react	ion Info	ormatic	n e	Γ.	14741	الد ل
	iation	GHA								ation,		0.250			41	
Agency		David W		Analys	sia Da	te Dec 1	0.2024			ation, a Type		Other		2		k.
Analyst Jurisdiction		IDOT		Time F			9, 2024 5:30 PM		PHF		J	0.95			w∳E	÷
Urban Street		Ogden Avenue		Analys			3.30 FIVI				Period	1> 7:0	20	_ →		
Intersection		Saratoga Avenue		File Na			o-Buildx	(110 VI		iysis i	Periou	1-7.0	JU	-		-
Project Descrip	tion	PM No-Build		File iva	ame	PIVI N	o-bullax	(uS.XI	JS					- 4	<u>ነ</u> ነ 141ቀዋ	1× (*
T Toject Descrip	lion	I W NO-Dulla														
Demand Inform	nation				EB	1		٧	/B			NB			SB	
Approach Move	ement			L	Т	R	L		T	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			126	119	0 43	72	15	93	38	56	49	51	79	47	99
Signal Informa	tion							.	E							
	_	Reference Phase	2	1	_7!	7		-	20				_	д		本
Cycle, s Offset, s	140.0	Reference Priase	2 End	·		° R	 	2	542			Sa	1	♀ 2	3	4
Uncoordinated				Green		1.4	99.1			0.0	0.0					F
Force Mode	No Fixed	Simult. Gap E/W Simult. Gap N/S	On On	Yellow Red	0.0	0.0	4.5 1.5	4. 1.		0.0	0.0		_		7	Ψ.
Force Wode	rixeu	Simult. Gap N/S	Oll	Neu	10.0	0.0	1.5	1.	J	0.0	10.0		3	0	4	0
Timer Results				EBI		EBT	WB	L	WE	3T	NBL		NBT	SBI	L	SBT
Assigned Phase	е			5		2	1		6				8			4
Case Number				1.1		4.0	1.1		4.0	0			6.0			6.0
Phase Duration	i, S			8.4		106.5	7.0		105	5.1			26.5			26.5
Change Period,	, (Y+R	c), S		3.5		6.0	3.5		6.0	0			6.0			6.0
Max Allow Head	dway (<i>I</i>	<i>MAH</i>), s		3.1		0.0	3.1		0.0	0			3.3			3.3
Queue Clearan	ce Time	e (g s), s		4.8			3.6						20.4			18.3
Green Extensio		(g e), s		0.1		0.0	0.0	\rightarrow	0.0	0			0.1			0.3
Phase Call Prol				0.99	_		0.95	\rightarrow				_	1.00			1.00
Max Out Probal	bility			0.09	9		0.0	1					1.00			1.00
Movement Gro	un Res	eulte.			EB			W	R			NB			SB	
Approach Move		Juito			T	R	L	T	-	R	L	T	R	L	T	R
Assigned Move				5	2	12	1	6	_	16	3	8	18	7	4	14
Adjusted Flow F), veh/h		133	653	_	76	86	_	357	59	105		83	154	
		ow Rate (s), veh/h/l	n	1810	1885		1810	190	-	884	1253	1740		1309	1693	
Queue Service		· · ·		2.8	20.9		1.6	33.		34.1	6.5	7.7		8.6	11.9	
Cycle Queue C	learanc	e Time (<i>g c</i>), s		2.8	20.9	20.9	1.6	33.	8 3	34.1	18.4	7.7		16.3	11.9	
Green Ratio (g	/C)			0.74	0.72	0.72	0.73	0.7	1 0).71	0.15	0.15		0.15	0.15	
Capacity (c), v	eh/h			249	1354	1337	336	134	5 13	334	128	255		171	248	
Volume-to-Capa				0.533	0.48	2 0.483	0.226	0.63	39 0.	.642	0.461	0.414		0.486	0.621	
		t/In (95 th percentile		73	328	_	26	49	-	198	94	153		130	227	
		eh/ln (95 th percenti		2.9	13.0	_	1.1	19.	_	9.9	3.8	6.1		5.2	9.1	
		RQ) (95 th percent	ile)	0.36	0.00		0.08	0.0	_	0.00	1.11	0.00		1.54	0.00	-
Uniform Delay (`			12.7	8.5	8.5	7.2	10.	\rightarrow	0.9	64.8	54.3		61.7	56.1	
Incremental De		•		0.7	1.2	1.2	0.1	2.3	_	2.4	1.0	0.4		0.8	3.2	-
Initial Queue De		•		0.0	0.0 9.7	9.8	7.3	0.0 13.	_	0.0 3.3	0.0 65.7	0.0 54.7		0.0 62.5	0.0 59.3	
Control Delay (Level of Service				13.4 B	9.7 A	9.8 A	7.3 A	13. B	_	3.3 B	65.7 E	54.7 D		62.5 E	59.3 E	
Approach Delay				10.1		В	13.0	_	В		58.7		E	60.4		E
Intersection Delay				10.			7.0		D		50.7		_	B		_
	,, <u>_</u> ,, _															
Multimodal Re	sults				EB			W	В			NB			SB	
Pedestrian LOS	Score	/LOS		1.87	7	В	1.87	7	В		2.31		В	2.3	1	В
Bicycle LOS Sc	ore / LC	os		1.67	7	В	1.97	7	В		0.76	; <u> </u>	Α	0.88	3	Α


Generated: 12/19/2024 9:39:36 AM

ORD 2025-10692 Page 118 of 167

		HCS S	Sign	aliz	ed li	nters	ectior	ı Int	ern	nedia	ite Va	lues	i		Append	dix H	
General Inform	nation									Intor	section	Info	rmat	ion		J 4 사사	l la la
Agency	iation	GHA									tion, h	_	0.25			41	and the last of th
Analyst		David W		Δn	alysis	Date	Dec 19,	2024			Type		Othe		4		
Jurisdiction		IDOT		-	ne Pe	_	4:30-5:3			PHF	туре		0.95			w‡ε	. <u>×</u> .
Urban Street		Ogden Avenue		-	alysis	_	2031	O I IVI			ysis Per		1> 7		-{ - 1 - 1 +		-
Intersection		Saratoga Avenue		_	e Nam		PM No-E	Ruildy	'IIC Y		y 515 T C1	lou	1- 1	.00			
Project Descrip		PM No-Build		1 110	o i tuii	10	IVI IVO-L	Juliux	.uo.x	iuo –					⊣ '	ነব ↑ ቀ°	7 4 7
Demand Inform	notion					EB				NB			NE)	_	SB	
Approach Move						T	R	L		T	R	L	T	R	L	T	R
Demand (v), v				-		1190	43	72	1.	593	38	56	49		79	47	99
Demand (v), v	CII/II			14	20	1190	40	12		J9J	30	30	43	J 31	19	47	99
Signal Informa	ition			П						JU3	П			4			1
Cycle, s	140.0	Reference Phase	2	1	-	2 6	≓		•	542				_	4		4
Offset, s	0	Reference Point	End	Gr	een 3	3.5	1.4	99.1	12	:11	0.0	0.0		1	¥ 2	3	
Uncoordinated	No	Simult. Gap E/W	On		llow 3			4.5				0.0		7	→		K t
Force Mode	Fixed	Simult. Gap N/S	On	Re		0.0		1.5				0.0		5	6	7	<u> </u>
Saturation Flo	w / Dela	NV		T	Т	R	L	Т	.	R		-	Т	R	L	Т	R
Lane Width Adj			1.0	\rightarrow	1.000	-			\rightarrow	1.000	1.000		000	1.000	1.000	1.000	
		ade Factor (f _{HVg})	1.0	\rightarrow	0.992	+	_	-	-	1.000	1.000		000	1.000	1.000	1.000	
Parking Activity		, -,	1.0	\rightarrow	1.000	+		_	\rightarrow	1.000	1.000		000	1.000	1.000	1.000	
Bus Blockage A		· · · /	1.0	\rightarrow	1.000	1.000	_		\rightarrow	1.000	1.000		000	1.000	1.000	1.000	
Area Type Adju	_	· , ,	1.0	\rightarrow	1.000				\rightarrow	1.000	1.000		000	1.000	1.000	1.000	
* * * * * * * * * * * * * * * * * * * *		nent Factor (fLU)	1.0	\rightarrow	1.000	1.000			\rightarrow	1.000	1.000		000	1.000	1.000	1.000	
Left-Turn Adjus	•	· ,	0.9	\rightarrow	0.000	+	0.952	_	\rightarrow		0.659		000		0.689	0.000	
Right-Turn Adju		<u> </u>	-	\rightarrow	0.988	_		0.9	\rightarrow	0.992			916	0.916		0.891	
		djustment Factor (<i>f</i> _{Lpb}) 1.0	\rightarrow			1.000	_			1.000				1.000		$\overline{}$
		ljustment Factor (f _{Rpb}		\neg		1.000				1.000		1		1.000			1.000
Work Zone Adju		•	1.0	00	1.000	1.000	1.000	1.0	00	1.000	1.000	1.0	000	1.000	1.000	1.000	1.000
DDI Factor (foo	1)	,	1.0	00	1.000	1.000	1.000	1.0	00	1.000	1.000	1.0	000	1.000	1.000	1.000	1.000
Left-Turn Prot.	CAV Adj	. Factor (fcav,prot)	1.0	00			1.00					\top					
Left-Turn Perm	. CAV A	dj. Factor (fcav,perm)	Т								1.00	\top			1.00		
Movement Satu	ıration F	low Rate (s), veh/h	18	10	3616	131	1810	369	96	88	1253	8	53	888	1309	545	1148
Proportion of Ve	ehicles A	Arriving on Green (P)	0.0)4	0.72	0.72	0.02	0.7	71	0.71	0.15	0.	15	0.15	0.15	0.15	0.15
Incremental De	lay Fact	or (<i>k</i>)	0.0)4	0.50	0.50	0.04	0.5	50	0.50	0.04	0.	04		0.04	0.14	
Signal Timing	/ Mover	ment Groups		EBL	F	EBT/R	WE	RI .	۱۸	/BT/R	N	31	N	IBT/R	SBI	_	SBT/R
Lost Time (t _L)	7 1110 101	попт оточро	_	3.5	-	6.0	3.5	$\overline{}$		6.0	1	<u> </u>		6.0	OB.		6.0
Green Ratio (g/	(C)		_).74		0.72	0.7	_		0.71				0.15			0.15
, -		ow Rate (s _ρ), veh/h/lr	_	288		0	43	_		0				253			1309
		/ Rate (ssh), veh/h/ln															
Permitted Effect		. , ,	9	9.1		0.0	99.	1		0.0			2	20.5			20.5
Permitted Servi		\ <u>-</u> ,	_	55.0		0.0	77.	_		0.0				8.6			12.8
Permitted Queu		1- ,	_	29.1			4.6							6.5			8.6
Time to First Bl		(3.)	_	0.0		0.0	0.0			0.0				0.0			0.0
Queue Service	Time Be	efore Blockage (<i>gf</i> s), s	5														
		tion Flow (s _R), veh/h/l	_														
Protected Right	Effectiv	ve Green Time (g _R), s															
Multimodal					EB			V	/B			١	IB			SB	
Pedestrian F _w /	Fv		1	.198		0.000	1.19	98	0	.000	1.5			.000	1.55		0.000
Pedestrian <i>F</i> ₅ /			_	.000	_	0.069	0.00	$\overline{}$.072	0.0			.158	0.00	_	0.158
Pedestrian Mcor			(0.00			0.0	$\overline{}$			0.0	00			0.00)	
Bicycle c _b / d _b			_	36.2	4	5.56	1415	\rightarrow	Ę	5.97	292		5	1.02	292.5	_	51.02
				3.64		1.18	-3.6			1.48	-3.	C 4		0.27	-3.64	4	0.39

23

ORD 2025-10692 Page 119 of 167

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ---

Copyright © 2024 University of Florida, All Rights Reserved.

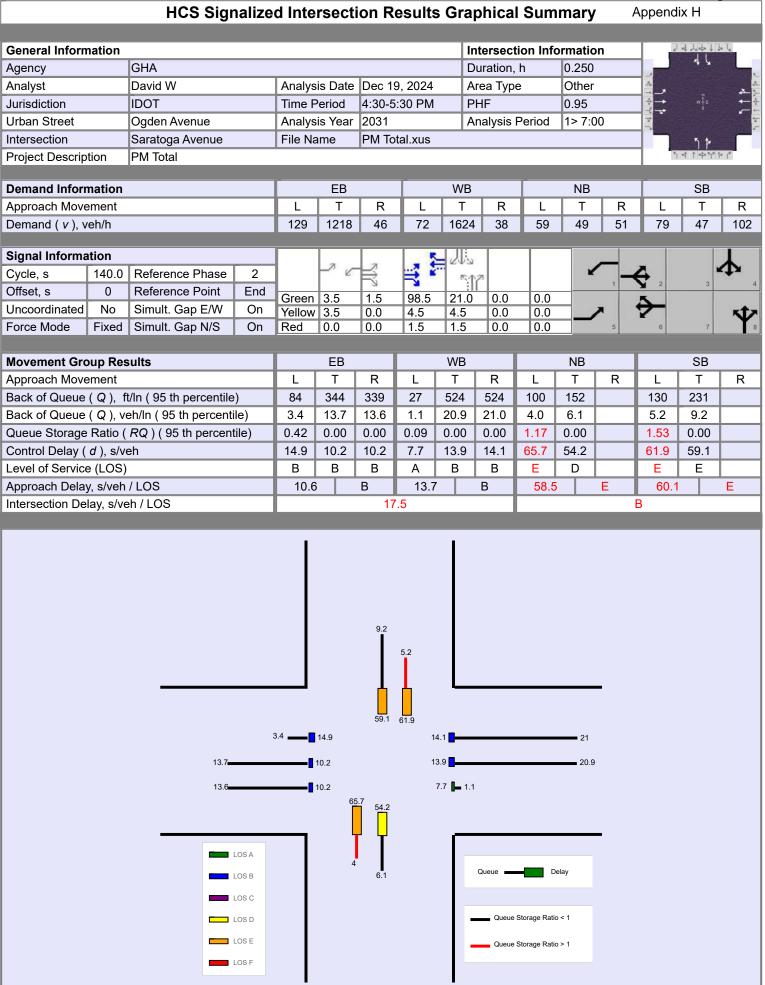
HCS™ Streets Version 2024 PM Existing.xus

Generated: 12/19/2024 9:39:36 AM

ORD 2025-10692 Page 121 of 167

KD 2023-10092	HCS	Signa	lized	Inters	sectio	n In	put Da	ta		,	Append		ge 121 0
											,		
General Information	T						Intersec		-			4741	te la
Agency	GHA						Duration		0.250				
Analyst	David W			e Dec 1		_	Area Typ	е	Other				<u> </u>
Jurisdiction	IDOT	Time F			:30 PM		PHF		0.95		☆	w 	₩
Urban Street	Ogden Avenue	Analys	is Year				Analysis	Period	1> 7:0	00	7		\$ 2
Intersection	Saratoga Avenue	File Na	ame	PM To	tal.xus							14	
Project Description	PM Total										15	4 1 4 Y	7
Demand Information		T	EB		1	W	В	T	NB		1	SB	
Approach Movement		L	Т	R	L	T	R	L	Т	R	L	Т	R
Demand (v), veh/h		129	1218	46	72	16:	24 38	59	49	51	79	47	102
Signal Information		-	J		я		la l			_			\mathbf{A}
Cycle, s 140.0		-	- 8	R	=		17		K		€ 2	3	4
Offset, s 0	Reference Point End	Green	3.5	1.5	98.5	21	.0 0.0	0.0			N.		
Uncoordinated No	Simult. Gap E/W On	Yellow	-	0.0	4.5	4.5		0.0		<i>></i>	7		V
Force Mode Fixed	Simult. Gap N/S On	Red	0.0	0.0	1.5	1.5	0.0	0.0	_	5	6	7	8
Traffic Information			EB			WE)		NB			SB	
Approach Movement		L	T	R	L	T	R	L	T	R	L	T	R
Demand (<i>v</i>), veh/h		129	1218	46	72	1624		59	49	51	79	47	102
Initial Queue (Q _b), veh	/h	0	0	0	0	0	0	0	0	0	0	0	0
Base Saturation Flow		1900	1900	1900	1900	1900	_	1900	1900	1900	1900	1900	1900
Parking (<i>N_m</i>), man/h	1 (00), 1011/11	1000	None	1000	1000	Non	_	1000	None	1000	1000	None	1000
Heavy Vehicles (<i>Phv</i>),	%	0	1		0	0		0	0		0	0	
Ped / Bike / RTOR, /h	70	0	0	0	0	0	0	0	0	0	0	0	0
Buses (N _b), buses/h		0	0	0	0	0	0	0	0	0	0	0	0
Arrival Type (AT)		3	3	3	3	3	3	3	3	3	3	3	3
Upstream Filtering (/)		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (W), ft		12.0	12.0	1100	12.0	12.0		12.0	12.0		12.0	12.0	
Turn Bay Length, ft		200	0		315	0		85	0		85	0	
Grade (<i>Pg</i>), %			0		0.0	0			0			0	
Speed Limit, mi/h		35	35	35	35	35	35	35	35	35	35	35	35
Phase Information		EBL	_	EBT	WBI		WBT	NBL	- '	NBT	SBL		SBT
Maximum Green (Gmax	·	13.0	_	100.0	13.0	_	100.0			27.0			27.0
Yellow Change Interva		3.5	_	4.5	3.5	_	4.5			4.5			4.5
Red Clearance Interva		0.0		1.5	0.0		1.5			1.5			1.5
Minimum Green (Gmin	,.	3	-	15	3		15	- 0.0	-	6	0.0	_	6
Start-Up Lost Time (It Extension of Effective		2.0	_	2.0	2.0	_	2.0	2.0		2.0	2.0	_	2.0
Passage (PT), s	Green (e), s	2.0	_	2.0	2.0	_	2.0	2.0		2.0	2.0		2.0
Recall Mode		Off		Min	Off	_	Min			Off			Off
Dual Entry		No	-	Yes	No	_	Yes			Yes			Yes
Walk (<i>Walk</i>), s				0.0			0.0			0.0			0.0
Pedestrian Clearance	Time (PC), s			0.0			0.0			0.0			0.0
Multimodal Informati		0.0	EB	05.0	0.0	WB	_	0.0	NB	05.0	0.0	SB	05.0
·	n Walk / Corner Radius	0.0	No 12.0	25.0	0.0	No 12.0	_	0.0	No 12.0	25.0	0.0	No 12.0	25.0
Walkway / Crosswalk		9.0	12.0	0.0	9.0	12.0		9.0	12.0	0.0	9.0	12.0	0.0
Street Width / Island / Width Outside / Bike L	·	0.0 12.0	5.0	No 2.0	12.0	5.0	No 2.0	0.0 12.0	5.0	No 2.0	0.0 12.0	5.0	No 2.0
Pedestrian Signal / Oc		No		0.50	No		0.50	No		0.50	No		0.50
. sassaran signar / Oc	piod i dililily	140		5.50	140		5.55	. 10			140		

ORD 2025-10692 Page 122 of 167


		нся	S Sigr	nalize	d Int	ersect	ion R	esu	lts Su	mmary	/	,	Append	ix H	
General Inform	notice								Interes	ction Inf	iorm st!	on		4741	la L
	ation	GHA									-			44	
Agency				A I	:- D-4	- D 1	0.0004		Duratio	·	0.250		-		E.
Analyst		David W				e Dec 1			Area Ty	ре	Othe	<u>r</u>		w¦E	
Jurisdiction		IDOT		Time F			5:30 PM		PHF	- D:	0.95	00		8	-
Urban Street		Ogden Avenue		Analys			4-1		Anaiysi	s Period	1> 7:	00	5		-
Intersection	4:	Saratoga Avenue		File Na	ame	PM I	otal.xus						- 1	্ ণুঁ ∲ বিশ্বপ	
Project Descrip	tion	PM Total				_								7 1 7 1	P
Demand Inform	nation				EB		T	W	/B	\top	NB		7	SB	
Approach Move	ement			L	Т	R	L	T	Г Р	L	T	R	L	Т	R
Demand (v), v	eh/h			129	1218	3 46	72	16	24 38	59	49	51	79	47	102
						_							-		
Signal Informa			Г		J.		.7		is .			_			$A \mid$
Cycle, s	140.0	Reference Phase	2		- 1	° R		- 21	542		5.	1	♦ 2	3	4
Offset, s	0	Reference Point	End	Green		1.5	98.5	21					_		
Uncoordinated	No	Simult. Gap E/W	On	Yellow	-	0.0	4.5	4.					~		V
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	1.5	1.5	5 0.0	0.0	_	5	6	7	8
Timer Results				EBI	$\overline{}$	EBT	WB	ı	WBT	NB	1	NBT	SBI		SBT
Assigned Phase	е			5	+	2	1	_	6	142	_	8	OB.		4
Case Number	<u>- </u>			1.1	-	4.0	1.1		4.0	1		6.0			6.0
Phase Duration	. S			8.5	_	106.0	7.0	_	104.5	_		27.0		-	27.0
Change Period,		c). S		3.5		6.0	3.5	_	6.0	1		6.0			6.0
Max Allow Head				3.1	_	0.0	3.1	_	0.0	_		3.3			3.3
Queue Clearan				5.0		0.0	3.7	-	0.0	1		21.0			18.3
Green Extensio		, = ,		0.1	_	0.0	0.0	_	0.0	_		0.0			0.3
Phase Call Prol		(90),0		0.99		0.0	0.95	_	0.0	1		1.00			1.00
Max Out Probal				0.19	_		0.02	-		_		1.00			1.00
Movement Gro	up Res	sults			EB			WE			NB			SB	
Approach Move				L	Т	R	L	Т	R	L	T	R	L	T	R
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow F		,-		136	669	661	76	876	_	62	105		83	157	
		ow Rate (s), veh/h/l	n	1810	1885		1810	190			1740		1309	1692	
Queue Service		- ,		3.0	22.0		1.7	35.	_		7.7		8.6	12.2	
Cycle Queue C		e Time (<i>g c</i>), s		3.0	22.0		1.7	35.			7.7		16.3	12.2	
Green Ratio (g				0.74	0.71	0.71	0.73	0.7	_		0.15		0.15	0.15	
Capacity (c), v				241	1346		324	133			261		176	254	
Volume-to-Capa			\	0.563	0.497	_	0.234	0.65			0.403		0.472	0.618	
		t/ln (95 th percentile	-	84	344	339	27	524	_	100	152		130	231	
		eh/ln(95 th percenti RQ)(95 th percent		3.4 0.42	13.7 0.00	0.00	0.09	0.0	_		0.00		5.2 1.53	9.2	
Uniform Delay (, , ,	uie)	14.1	8.9	8.9	7.6	11.4			53.8		61.2	55.7	
Incremental De	` '			0.8	1.3	1.3	0.1	2.5	_	1.0	0.4		0.7	3.4	
Initial Queue De	- \	,		0.0	0.0	0.0	0.0	0.0		0.0	0.0		0.0	0.0	
Control Delay (•		14.9	10.2	10.2	7.7	13.9	_	65.7	54.2		61.9	59.1	
Level of Service				В	В	В	A	В	В	E	D		E	E	
Approach Delay				10.6	5	В	13.7	7	В	58.		Е	60.1		Е
Intersection De	lay, s/ve	eh / LOS				17	7.5						В		
BA 141								,						0.5	
Multimodal Re		// 00		4.0-	EB	Г.	4.0-	WE		2.0	NB	В	0.0	SB	
Pedestrian LOS Bicycle LOS Sc				1.87 1.70	-	B B	1.87	\rightarrow	B B	2.3 0.7		В	2.31 0.88		В
Dicycle LOS Sc	ole / LC	70		1.70	,	D	1.98	ן כ	D	0.7	U	Α	0.88)	Α

ORD 2025-10692 Page 123 of 167

RD 2025-10692		HCS S	igna	lized	d Int	terse	ection	ı Inte	erm	edia	te Val	ues			Append		Page 123
General Inforn	nation									Inters	section	Infor	mati	ion		1414	1 1/2 1/2
Agency		GHA								Durat		-	0.25			4	<u> </u>
Analyst		David W		Analy	sis D	ate [Dec 19,	2024		Area		_	Othe		2,		
Jurisdiction		IDOT		Time		\rightarrow	:30-5:3			PHF	- 71	\rightarrow	0.95		*	w	₽ ←
Urban Street		Ogden Avenue		Analy		$\overline{}$	2031			-	sis Peri	_	1> 7		-(- -		-
Intersection		Saratoga Avenue		File N		\rightarrow	PM Total	l.xus		,						5	t. [
Project Descrip	tion	PM Total													1	ጎ ቀ ሰ ቀ	** * **
Dawa and Justan	4!	· 				- <u>D</u>				<u></u>			NID	<u> </u>		01	
Demand Inform					_	EB T	R		W	лв Г	B		NB T		-	SI	
Approach Move				100	-	•	_	70	-	-	R	-		R	L	_	
Demand (v), v	en/n			129	12	218	46	72	16	24	38 :	59	49	51	79	47	7 102
Signal Informa	ation						Dec.	_ 5	Į,	- a							1
Cycle, s	140.0	Reference Phase	2			2	€	4	- 21	542			0	-	4		xtx
Offset, s	0	Reference Point I	∃nd	Greei	2 3 4	5	1.5	98.5	21	10 0	0.0	0.0		1	¥ 4		3
Uncoordinated	No	Simult. Gap E/W	On	Yellov				4.5	4.			0.0		<i>></i>	→		S.D.
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0 (0.0	1.5	1.	5 0	0.0	0.0		5	6		7
Saturation Flo	w / Dola		1			R		Т		R		Т	.	R	1	Т	R
Lane Width Adj		-	1.00	_	\rightarrow	1.000	1.000	1.00	n	1.000	1.000	1.0	\rightarrow	1.000	1.000	1.00	
-		ade Factor (f _{HVg})	1.00	-	\rightarrow	1.000	1.000	1.00	\rightarrow	1.000	1.000	1.0	-	1.000	1.000	1.00	_
Parking Activity		,	1.00	_	\rightarrow	1.000	1.000	1.00	\rightarrow	1.000	1.000	1.0	\rightarrow	1.000	1.000	1.00	
Bus Blockage A		· /	1.00		\rightarrow	1.000	1.000		_	1.000	1.000	1.0	\rightarrow	1.000	1.000	1.00	
Area Type Adju			1.00	-	_	1.000	1.000	1.00	_	1.000	1.000	1.0	\rightarrow	1.000	1.000	1.00	
		nent Factor (fLU)	1.00		_	1.000	1.000	_	-	1.000	1.000	1.0	\rightarrow	1.000	1.000	1.00	_
Left-Turn Adjus			0.95	_	_	1.000	0.952	-	_	1.000	0.658	0.0	_	1.000	0.689	0.00	
Right-Turn Adju		· · ·	0.50	0.9	\rightarrow	0.987	0.002	0.99	\rightarrow	0.992	0.000	0.9	\rightarrow	0.916	0.000	0.89	_
-		djustment Factor (f _{Lpb})	1.00	_			1.000	-	_		1.000	-			1.000		
		djustment Factor (f _{Rpb})		\top		1.000		1		1.000				1.000			1.000
Work Zone Adj		•	1.00	0 1.0	000	1.000	1.000	1.00	0	1.000	1.000	1.0	00	1.000	1.000	1.00	0 1.000
DDI Factor (fdd			1.00	0 1.0	000	1.000	1.000	1.00	0	1.000	1.000	1.0	00	1.000	1.000	1.00	0 1.000
Left-Turn Prot.	CAV Ad	j. Factor (fcav,prot)	1.00)			1.00		\top								
Left-Turn Perm	. CAV A	dj. Factor (fcav,perm)		\top							1.00				1.00		
Movement Satu	ıration F	low Rate (s), veh/h	181	0 36	10	136	1810	369	8	86	1249	85	3	888	1309	534	1158
Proportion of V	ehicles /	Arriving on Green (P)	0.04	1 0.	71	0.71	0.03	0.70	0	0.70	0.15	0.1	5	0.15	0.15	0.15	0.15
Incremental De	lay Fact	tor (<i>k</i>)	0.04	1 0.	50	0.50	0.04	0.5)	0.50	0.04	0.0)4		0.04	0.15	;
Ciamal Timina	/ Mayras	mant Crauma		DI		OT/D	\A/E	21	١٨/٢	OT/D	ND		N	DT/D	CDI		CDT/D
Signal Timing Lost Time (t⊥)	/ IVIOVE	nent Groups	_	.5		BT/R B.0	WE 3.5	_		3T/R 3.0	NB	L		BT/R 6.0	SBL	-	SBT/R 6.0
Green Ratio (g/	/C)		_	74		.71	0.7			.70				0.0			0.15
,,,		ow Rate (<i>s</i> _₽), veh/h/ln	-	79		0	418	_		0				249		_	1309
		v Rate (<i>ssh</i>), veh/h/ln	_	. 0			, , ,							2.10			1000
Permitted Effect			98	3.5	C	0.0	98.	5	0	0.0			- 2	21.0		\neg	21.0
Permitted Servi		,= ,	_	2.6		0.0	75.	_		0.0				8.8			13.3
Permitted Que		1- /	_	3.9			5.0	_						6.9			8.6
Time to First BI			_	.0	C	0.0	0.0		0	0.0				0.0			0.0
		efore Blockage (<i>gf</i> s), s															
		tion Flow (s _R), veh/h/ln															
Protected Right	t Effectiv	ve Green Time (gR), s															
Multimodal				Е	В			W	В			N	В			SB	
Pedestrian F _w /	Fv		1.1	198	0.	000	1.19	98	0.0	000	1.55	7	0	.000	1.55	7	0.000
Pedestrian Fs /	Fdelay		0.0	000	0.	070	0.00	00	0.0	073	0.00	0	0	.157	0.00	0	0.157
Pedestrian Mco	rner / M cw	,	0.	00			0.0	0			0.0	0			0.00)	
Bicycle c _b / d _b			142	8.45	5	.72	1406	.89	6.	.16	300.	00	5	0.58	300.0	00	50.58
Bicycle Fw / Fv			-3	.64	1.	.21	-3.6 28	64	1.	.51	-3.6	4	(0.28	-3.64	4	0.40

28

ORD 2025-10692 Page 124 of 167

Generated: 12/19/2024 10:19:07 AM

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ---

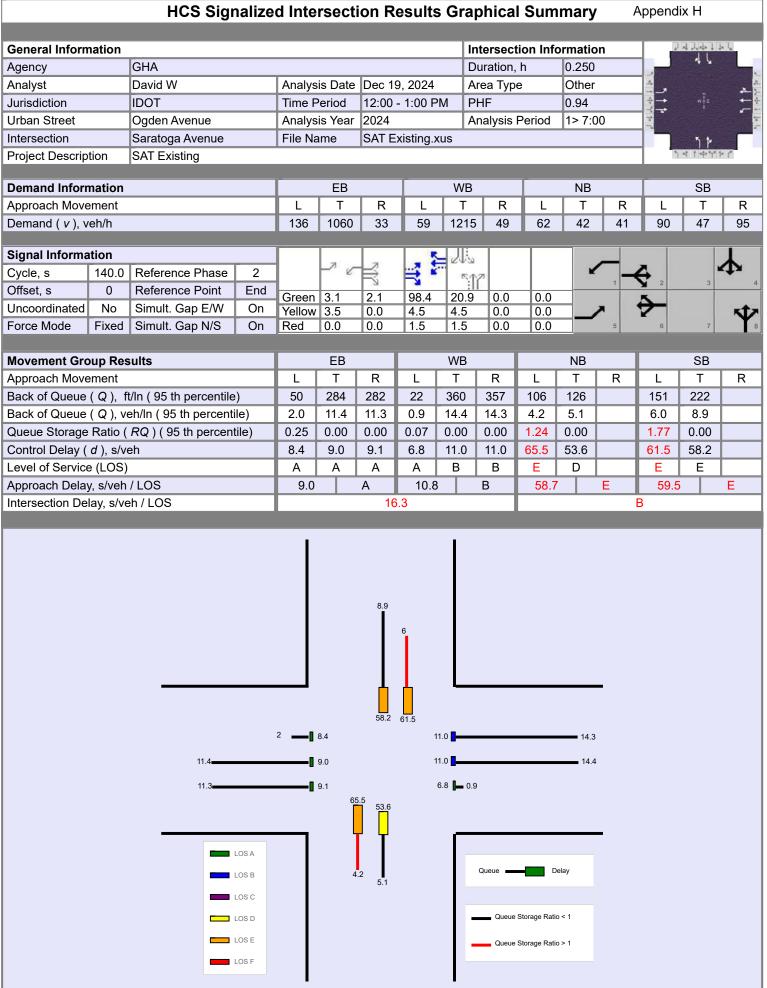
Copyright © 2024 University of Florida, All Rights Reserved.

HCS™ Streets Version 2024 PM Total.xus

ORD 2025-10692 Page 126 of 167

			HCS	Signa	lized	Inters	sectio	n In	put Da	ta		,	Append	ix H	30 120
	4.										4.			4 44 1	
General Informa	ation	la							Intersec		-	n		11	
Agency		GHA				1			Duration		0.250		-		
Analyst		David W				Dec 1		_	Area Typ	е	Other				<u>~</u> ¼
Jurisdiction		IDOT		Time F			- 1:00 F	PM	PHF		0.94		4	w‡£	<u>_</u>
Urban Street		Ogden Avenue		Analys					Analysis	Period	1> 7:0	00	7		Tr.
Intersection		Saratoga Avenue		File Na	ame	SAT E	xisting.	xus						7 1	
Project Descripti	ion	SAT Existing	_	_	_	_	_			_	_	_	1	4144	r (*
Demand Inform	ation				EB		1	W	 В	1	NB		T	SB	
Approach Mover					T	R	L	Т			T	R	L	T	R
Demand (v), ve				136	1060		59	12	_	62	42	41	90	47	95
Domana (1); 10	21 I,7 I I			100	1000				10 10	02	12				00
Signal Informat	tion					1000			20			-			1
Cycle, s	140.0	Reference Phase	2		7 8			333	512		K		4	,	4
Offset, s	0	Reference Point	End	Green	2.1	2.1	98.4	20	:11	0.0		1	2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.5	4.5		0.0		×	> −		sta
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	1.5	1.5		0.0		5	6	7	8
Traffic Informat	tion				EB			WE	3		NB			SB	
Approach Mover	ment			L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh	n/h			136	1060	33	59	121	5 49	62	42	41	90	47	95
Initial Queue (Q	b), veh/	h		0	0	0	0	0	0	0	0	0	0	0	0
Base Saturation	Flow F	Rate (<i>s</i> ₀), veh/h		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Parking (N _m), ma	an/h				None			Non	е		None			None	
Heavy Vehicles	(<i>P</i> _{HV}), ⁹	%		0	0		0	0		0	0		1	0	
Ped / Bike / RTC)R, /h			0	0	0	0	0	0	0	0	0	0	0	0
Buses (Nb), buse	es/h			0	0	0	0	0	0	0	0	0	0	0	0
Arrival Type (AT))			3	3	3	3	3	3	3	3	3	3	3	3
Upstream Filterin	ng (<i>I</i>)			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (W), ft			12.0	12.0		12.0	12.0)	12.0	12.0		12.0	12.0	
Turn Bay Length	n, ft			200	0		315	0		85	0		85	0	
Grade (Pg), %					0			0			0			0	
Speed Limit, mi/	'h			35	35	35	35	35	35	35	35	35	35	35	35
				- EDI	-	EDT	\4/D		MOT	NIDI		UDT	0.01		ODT.
Phase Informat) Di Olit		EBL	_	EBT	WBI	_	WBT	NBL	_	NBT	SBL	_	SBT
		or Phase Split, s		13.0	_	100.0	13.0	-	100.0		_	27.0			27.0
Yellow Change I		· ·		3.5	-	4.5	3.5	$\overline{}$	4.5	_	_	4.5			4.5
Red Clearance I				0.0		1.5	0.0	-	1.5			1.5	_		1.5
Minimum Green Start-Up Lost Tir				2.0	-	15 2.0	2.0	-	15 2.0	2.0		2.0	2.0	_	2.0
Extension of Effe				2.0	_	2.0	2.0	-	2.0	2.0		2.0	2.0		2.0
Passage (PT), s		31een (e), 3		2.0	_	2.0	2.0	-	2.0	2.0	_	2.0	2.0		2.0
Recall Mode				Off	_	Min	Off	-	Min			Off			Off
Dual Entry				No	_	Yes	No	_	Yes			Yes			Yes
Walk (<i>Walk</i>), s				140		0.0	140		0.0			0.0			0.0
Pedestrian Clear	rance 7	Time (PC), s				0.0			0.0		_	0.0			0.0
		·- \· • /, •				•									
Multimodal Info					EB			WB	_		NB			SB	
		Walk / Corner Radi	us	0.0	No	25.0	0.0	No		0.0	No	25.0	0.0	No	25.0
Walkway / Cross				9.0	12.0	0.0	9.0	12.0	0.0	9.0	12.0	0.0	9.0	12.0	0.0
Street Width / Isl				0.0	0	No	0.0	0	No	0.0	0	No	0.0	0	No
		ane / Shoulder, ft		12.0	5.0	2.0	12.0	5.0	2.0	12.0	5.0	2.0	12.0	5.0	2.0
Pedestrian Signa	al / Occ	cupied Parking		No		0.50	No		0.50	No		0.50	No		0.50

Page 127 of 167 ORD 2025-10692


		HCS	S Sigr	nalize	d Int	ersect	ion R	esu	Its S	Sum	mary	•		Append	lix H	
General Inforn	ation								Into	react	ion Info	ormatic	n e	Γ.	4 744	Ja lu
	iation	GHA								ation,		0.250			41	
Agency		David W		Analys	via Dat	o Doo 1	0.2024					Other				E.
Analyst Jurisdiction		IDOT		Time F		e Dec 1	- 1:00 F		PHF	а Туре -)	0.94			w∳E	
Urban Street		-					- 1.00 F	IVI			Dorind	1> 7:0	20			<u>-</u>
Intersection		Ogden Avenue		Analys File Na			viotina	V// 10	Anai	iysis i	Period	177.0	JU			-
	tion	Saratoga Avenue		File iva	ame	SALE	xisting.	xus) / বেক্ষ	tr (*
Project Descrip	uon	SAT Existing			-	_			-	-		-				P.I.
Demand Inform	nation				EB		T	V	/B			NB			SB	
Approach Move	ement			L	Т	R	L		Т	R	L	Т	R	L	Т	R
Demand (<i>v</i>), v	eh/h			136	106	0 33	59	12	215	49	62	42	41	90	47	95
Oi and the forms	4!					_	-				_					
Signal Informa		D (D)	Г	-	_N .			12	l'a				_	я .		人
Cycle, s	140.0	Reference Phase	2	-		ß	3.	2	542			Se	1	♦ 2	3	4
Offset, s	0	Reference Point	End	Green		2.1	98.4			0.0	0.0					
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.5	4.		0.0	0.0		<i>></i>	7		Ψ
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	1.5	1.	5	0.0	0.0		5	6	7	8
Timer Results				EBI	_	EBT	WB	ı	WB	зт	NBL		NBT	SBI		SBT
Assigned Phase	<u></u>			5		2	1	_	6	_	.,,_,		8			4
Case Number				1.1		4.0	1.1		4.0	0			6.0			6.0
Phase Duration	ı, S			8.7		106.5	6.6	\neg	104	.4			26.9		\neg	26.9
Change Period	, (Y+R	c), S		3.5		6.0	3.5		6.0	0			6.0			6.0
Max Allow Hea	dway (<i>I</i>	<i>MAH</i>), s		3.1		0.0	3.1	\neg	0.0	0			3.3			3.3
Queue Clearan	ce Time	e (g s), S		5.1			3.4						20.9			18.2
Green Extension	n Time	(g e), s		0.1		0.0	0.0		0.0	0			0.0			0.3
Phase Call Pro	bability			1.00)		0.9	1					1.00			1.00
Max Out Proba	bility			0.21	I		0.0	1					1.00			1.00
Mayamant Cra	Dag							١٨/١	n			ND			CD	
Movement Gro		Suits		-	EB T	R		WI		R		NB T	R	-	SB T	В
Assigned Move				5	2	12	1	6	\rightarrow	16	3	8	18	7	4	14
Adjusted Flow I) voh/h		145	584	578	63	670	_	668	66	88	10	96	151	14
		ow Rate (s), veh/h/l	n	1810	1900	_	1810	190	\rightarrow	874	1256	1745		1319	1696	
Queue Service		· · ·	111	3.1	17.6		1.4	23.	_	23.1	7.2	6.3		9.8	11.6	
Cycle Queue C				3.1	17.6		1.4	23.	_	23.1	18.9	6.3		16.2	11.6	
Green Ratio (g		(90),0		0.74	0.72	_	0.73	0.7	\rightarrow	0.70	0.15	0.15		0.15	0.15	
Capacity (c), v				340	1364		375	133	-	317	134	260		189	253	
Volume-to-Cap		atio (X)		0.425	0.429		0.167	0.50	_	.507	0.490	0.339		0.508	0.597	
Back of Queue	(Q), f	t/ln (95 th percentile	:)	50	284	282	22	360	0 3	357	106	126		151	222	
Back of Queue	(Q), v	eh/In (95 th percenti	ile)	2.0	11.4	11.3	0.9	14.	4 1	4.3	4.2	5.1		6.0	8.9	
Queue Storage	Ratio (RQ) (95 th percent	tile)	0.25	0.00	0.00	0.07	0.0	0 0	0.00	1.24	0.00		1.77	0.00	
Uniform Delay	(d 1), s	/veh		8.1	8.1	8.1	6.7	9.6	3 9	9.6	64.4	53.4		60.6	55.6	
Incremental De	lay (<i>d</i> 2), s/veh		0.3	1.0	1.0	0.1	1.4	1 1	1.4	1.0	0.3		0.9	2.6	
Initial Queue Do		•		0.0	0.0	0.0	0.0	0.0	_	0.0	0.0	0.0		0.0	0.0	
Control Delay (8.4	9.0	9.1	6.8	11.	$\overline{}$	1.0	65.5	53.6		61.5	58.2	
Level of Service				A	A	A	Α	В		В	E	D		E	E	<u> </u>
Approach Delay				9.0		A	10.8	3	В		58.7		Е	59.5)	E
Intersection De	ıay, s/ve	en / LOS				16	5.3							В		
Multimodal Re	sults				EB			WI	В			NB			SB	
Pedestrian LOS		/LOS		1.87		В	1.87	_	В		2.31		В	2.3		В
Bicycle LOS So				1.57	-	В	1.65	\rightarrow	В	-	0.74	_	Α	0.89	_	Α

ORD 2025-10692 Page 128 of 167

		HCS	sigi	naliz	zed I	nters	ectior	n Int	ern	nedia	ite Va	iues			Append	aix H	
General Inforn	nation									Inter	section	Info	mat	ion		7 4 7/4	» ↓ [» [,
Agency	iation	GHA								\rightarrow	tion, h	_	0.25			4	-
Analyst		David W		Δ	nalveis	Date	Dec 19,	2024		_	Type		Othe		4		
Jurisdiction		IDOT		\rightarrow	me Pe	$\overline{}$	12:00 - 1		DN A	PHF	туре	$\overline{}$	0.94				E
Urban Street		Ogden Avenue		_	nalysis	$\overline{}$	2024	1.00 F	IVI		ysis Per		1> 7				
Intersection		Saratoga Avenue		\rightarrow	le Nan			cting y	/IIC	Allai	ysis rei	iou	1-1	.00	-		
Project Descrip	tion	SAT Existing		Г	ie ivan	ne	SAT Exi	sung.	kus						- 1	<u>)</u> গৰাকৰ	* *******
r roject besonp	uon	OAT Existing															
Demand Inforr	nation					EB			٧	ΝB			NE	3		S	В
Approach Move	ement				L	Т	R	L		Т	R	L	Т	R	L		
Demand(<i>v</i>), v	eh/h				136	1060	33	59	1:	215	49	62	42	. 41	90	4	7
Signal Informa	ntion									:							
Cycle, s	140.0	Reference Phase	2	-	-	7 /	_3		= Z	1/2			P		7		4
Offset, s	0	Reference Point	End				73	3						1	▼ 2		3
Uncoordinated	No	Simult. Gap E/W	On		reen			98.4				0.0		,	4		
Force Mode		Simult. Gap E/W			ellow			4.5 1.5				0.0		/			7
roice Mode	Fixed	Simuit. Gap N/S	On	K	ed	0.0	0.0	1.5	1	.o [(0.0	0.0		5	6		/
Saturation Flo	w / Dela	ay	T	L	Т	R	L	Т		R	L	-	Γ	R	L	Т	Т
_ane Width Adj	ustment	Factor (f _w)	1.	000	1.000	1.000	1.000	1.00	00	1.000	1.000	1.0	000	1.000	1.000	1.00	0 1.
		ade Factor (f _{HVg})	_	000	1.000			-	_	1.000	1.000		000	1.000	0.992	1.00	-
•		nent Factor (f_p)	_	000	1.000			-	\rightarrow	1.000	1.000	_	000	1.000	1.000	1.00	_
Bus Blockage A		,	_	000	1.000	_			\rightarrow	1.000	1.000		000	1.000	1.000	1.00	-
Area Type Adju	_	· , ,	_	000	1.000			_	\rightarrow	1.000	1.000		000	1.000	1.000	1.00	\rightarrow
		nent Factor (f _{LU})	_	000	1.000				\rightarrow	1.000	1.000		000	1.000	1.000	1.00	-
_eft-Turn Adjus	•	· ,	_	952	0.000		0.952	_	_	1.000	0.661		000	1.000	0.694	0.00	_
Right-Turn Adju			10.	302	0.989			0.98	\rightarrow	0.986	0.001	_	918	0.918	0.004	0.89	_
		djustment Factor (f _{Lpt}	1	000	0.000	0.000	1.000			0.500	1.000	_	710	0.010	1.000	0.00	0.
		djustment Factor (<i>f_{Rpt}</i>		000		1.000		+-	\dashv	1.000	1.000			1.000	1.000		1.
Nork Zone Adjı		•		000	1.000			1.00	00	1.000	1.000	1.0	000	1.000	1.000	1.00	\rightarrow
DDI Factor (foo		1 dotor (1w2)	_	000	1.000	+		-	\rightarrow	1.000	1.000	_	000	1.000	1.000	1.00	_
` `		j. Factor (fcav,prot)	_	.00	1.000	1.000	1.000	1.00		1.000	1.000	, 1.0	,00	1.000	1.000	1.00	1.
		dj. Factor (<i>f</i> cav,pem)	+	.00		+	1.00	-	\dashv		1.00	+	\dashv		1.00		+
		Flow Rate (s), veh/h	1	310	3665	114	1810	362	20	146	1256		22	862	1319	56	1 1
		Arriving on Green (P)	_	.04	0.72	0.72	_	0.7	\rightarrow	0.70	0.15	$\overline{}$	15	0.15	0.15	0.1	_
			_					0.7	_			_		0.15	0.13		_
Incremental De	iay Fact	.oi (n)		.04	0.50	0.50	0.04	0.5	, U	0.50	0.04	U.	04		0.04	0.1	,
Signal Timing	/ Mover	ment Groups	Т	EBL	-	EBT/R	WE	3L	W	/BT/R	NE	3L	N	IBT/R	SBL		SBT
_ost Time (t∠)				3.5		6.0	3.5	5		6.0				6.0			6.0
Green Ratio (<i>g/</i>	/C)			0.74		0.72	0.7	3	C	0.70			(0.15			0.1
Permitted Satu	ration FI	ow Rate (<i>s</i> _ρ), veh/h/li	1	413		0	49	1		0			1	1256			131
Shared Saturat	ion Flow	Rate (ssh), veh/h/ln															
Permitted Effec	tive Gre	en Time (g_p) , s	T	99.0		0.0	98.	.4		0.0			2	20.9			20.
Permitted Servi		,= ,		75.3		0.0	80.	.9		0.0				9.3			14.
		ce Time (g _{ps}), s		12.8			2.6	3						7.2			9.8
Time to First Bl	ockage	(<i>g</i> _f), s		0.0		0.0	0.0	0		0.0				0.0			0.0
		efore Blockage (<i>gf</i> s),	3														
		tion Flow (s _R), veh/h/	_														
		/e Green Time (<i>g</i> ℝ), s	_														
Multimodal		(5)			EB			W	/B			N	IB			SE	3
Pedestrian F _w /	Fv		-	1.19		0.000	1.19			.000	1.5			.000	1.55	_	0.00
Pedestrian F _s /			_	0.00		0.069	0.00			.073	0.0		_	.157	0.00	_	0.15
Pedestrian <i>Mcor</i>		,	-	0.00	_	3.300	0.0				0.0				0.00	_	0.10
Bicycle <i>c_b / d_b</i>	I IVICW		1	435.4		5.58	1405	\rightarrow	F	5.18	298		5	0.66	298.5	_	50.6
Bicycle <i>C_b / U_b</i>				-3.6 ⁴		1.08	-3.6	_		1.16	-3.0			0.00	-3.64	_	0.4
DICACIG LM / LA				-5.02	† <u> </u>	1.00	ა.c	J ' 4		1.10	J.	J '1		J.∠ິ່ນ	-3.04	†	0.4

33

ORD 2025-10692 Page 129 of 167

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ---

35

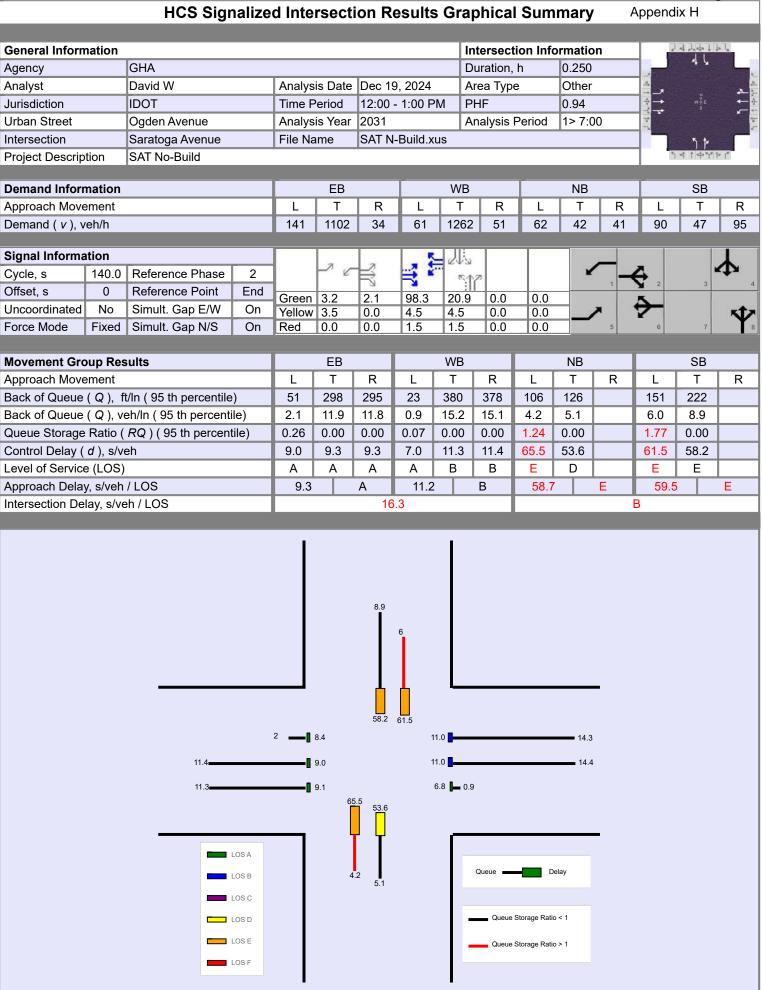
Copyright © 2024 University of Florida, All Rights Reserved.

HCS™ Streets Version 2024 SAT Existing.xus

ORD 2025-10692 Page 131 of 167

			HCS	Signa	lized	Inters	sectio	n In	put Da	ta		,	Append	ix H	
	4.										4.			4 444 1	
General Inform	nation	Ta							Intersec					1	
Agency		GHA				1			Duration		0.250		-		
Analyst		David W				Dec 1			Area Typ	е	Other				≥
Jurisdiction		IDOT		Time F			- 1:00 F	PM	PHF		0.94			w‡£ 8	<u></u>
Urban Street		Ogden Avenue		Analys					Analysis	Period	1> 7:0	00	7		Tr.
Intersection		Saratoga Avenue		File Na	ame	SAT N	I-Build.x	cus						7 1	
Project Descrip	tion	SAT No-Build	_	_	_	_	_			_	_	_	1	4 1 4 4	* (*
Demand Inform	nation				EB		T	W	В	7	NB		7	SB	
Approach Move					T	R	L	1	-	1	T	R	L	T	R
Demand (v), v				141	1102		61	12		62	42	41	90	47	95
								II.							
Signal Informa	tion				28	- 2			ta l						
Cycle, s	140.0	Reference Phase	2		-, R	Ħ	#	्र	512		K		ፅ	2	ctz
Offset, s	0	Reference Point	End	Green	3.2	2.1	98.3	20	311	0.0			N C	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.5	4.5		0.0		<i>></i>	→		址
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	1.5	1.5	5 0.0	0.0		5	6	7	8
Traffic Informa					EB		<u> </u>	WE			NB			SB	
Approach Move				L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), ve				141	1102	34	61	126		62	42	41	90	47	95
Initial Queue (C				0	0	0	0	0	0	0	0	0	0	0	0
Base Saturation		Rate (s₀), veh/h		1900	1900	1900	1900	190		1900	1900	1900	1900	1900	1900
Parking (N _m), m					None			Non	е		None			None	\square
Heavy Vehicles		%		0	0		0	0		0	0		1	0	
Ped / Bike / RT	·			0	0	0	0	0	0	0	0	0	0	0	0
					0	0	0	0	0	0	0	0	0	0	0
Arrival Type (A7	m Filtering (/)				3	3	3	3	3	3	3	3	3	3	3
	dth (W), ft				1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
	y Length, ft				12.0		12.0	12.0)	12.0	12.0		12.0	12.0	
					0		315	0	+	85	0		85	0	
Grade (Pg), %	² g), %				0	0.5	0.5	0	0.5		0	0.5	0.5	0	
Speed Limit, mi					35	35	35	35	35	35	35	35	35	35	35
Phase Informa	tion			EBL		EBT	WBI		WBT	NBI	_	NBT	SBL		SBT
Maximum Gree	n (<i>G</i> max) or Phase Split, s		13.0	,	100.0	13.0		100.0			27.0			27.0
Yellow Change				3.5		4.5	3.5		4.5			4.5			4.5
Red Clearance	Interval	I (Rc), s		0.0		1.5	0.0	\neg	1.5			1.5			1.5
Minimum Greer				3		15	3		15			6			6
Start-Up Lost Ti	ime (<i>lt</i>)	, s		2.0		2.0	2.0	\neg	2.0	2.0		2.0	2.0		2.0
Extension of Eff	fective (Green (e), s		2.0		2.0	2.0		2.0	2.0		2.0	2.0		2.0
Passage (PT),						2.0	2.0		2.0			2.0			2.0
Recall Mode	ecall Mode					Min	Off		Min			Off			Off
Dual Entry	·					Yes	No	\perp	Yes			Yes			Yes
Walk (<i>Walk</i>), s	· · · · · · ·					0.0			0.0			0.0			0.0
Pedestrian Clea	destrian Clearance Time (<i>PC</i>), s					0.0			0.0			0.0			0.0
Multimodal Inf	Itimodal Information							WB			NB			SB	
	% Speed / Rest in Walk / Corner Radius					25.0	0.0	No	_	0.0	No	25.0	0.0	No	25.0
		Vidth / Length, ft		9.0	No 12.0	0.0	9.0	12.0	_	9.0	12.0	0.0	9.0	12.0	0.0
Street Width / Is				0.0	0	No	0.0	0	No No	0.0	0	No	0.0	0	No
		ane / Shoulder, ft		12.0	5.0	2.0	12.0	5.0		12.0	5.0	2.0	12.0	5.0	2.0
Pedestrian Sign				No		0.50	No		0.50	No		0.50	No		0.50
. cascalair oigi	, 500			.,,,		3.30	140		2.00	140			140		

ORD 2025-10692 Page 132 of 167


		HCS	S Sigr	nalize	d Int	ersect	ion R	esu	Its Su	mmar	у		Append	ix H	
General Inform	notic-								Into	ction In	form = 4 !	00		작가하↑	be la
	ation	GHA							-		0.250			41	
Agency				Analys	via Dat	o Doo 1	0.2024		Duratio	·					E.
Analyst		David W				e Dec 1			Area Ty	ре	Othe	ſ		w E	<u></u>
Jurisdiction		IDOT		Time F			- 1:00 F	-IVI	PHF	- DiI	0.94	00		****	-
Urban Street		Ogden Avenue		Analys			I D. State		Anaiysi	s Period	1> 7:	00	5		2
Intersection	4:	Saratoga Avenue		File Na	ame	SAIN	۱-Build.>	kus					- 1	া † † বিশ্বপ	1. 6
Project Descrip	tion	SAT No-Build												4 141	r II
Demand Inform	nation				EB		Т	V	/B		NB		T	SB	
Approach Move	ement			L	Т	R	L	Τ.	T R	L	Т	R	L	Т	R
Demand (v), v	eh/h			141	1102	2 34	61	12	262 51	62	42	41	90	47	95
	41								P.	_					
Signal Informa		D (D)	Γο	-	_N .	7		7	Visa		172	_	,		$A \mid$
Cycle, s	140.0	Reference Phase	2			° R		2	542		5	1	♦ 2	3	4
Offset, s	0	Reference Point	End	Green		2.1	98.3		0.0						
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.5	4.					7		Ŷ
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	1.5	1.	5 0.0	0.0		5	6	7	8
Timer Results				EBI		EBT	WB	L	WBT	NE	L	NBT	SBI		SBT
Assigned Phase	<u></u>			5		2	1	_	6	1	_	8			4
Case Number				1.1		4.0	1.1		4.0			6.0			6.0
Phase Duration	, S			8.8		106.4	6.7	\rightarrow	104.3	-	\neg	26.9		\neg	26.9
Change Period		c), S		3.5	_	6.0	3.5	\rightarrow	6.0			6.0			6.0
Max Allow Head				3.1		0.0	3.1	_	0.0	-	\neg	3.3		\neg	3.3
	ie Clearance Time (g s), s						3.4	\rightarrow				20.9			18.2
	n Extension Time (g_e), s					0.0	0.0	\rightarrow	0.0	-	\neg	0.0		\neg	0.3
	, - ,						0.92	_				1.00			1.00
Max Out Proba	se Call Probability Out Probability						0.0	1		-	\neg	1.00		\neg	1.00
	vement Group Results				EB			WI		+	NB			SB	
	vement Group Results proach Movement				T	R	L	T	R	L	T	R	L	T	R
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow I		,-		150	607	601	65	702	_	66	88	-	96	151	
Queue Service		ow Rate (s), veh/h/l	n	1810 3.2	1900		1810	190 24.	_		1745 6.3		1319 9.8	1696 11.6	
Cycle Queue C		- ,		3.2	18.6 18.6		1.4	24.	_		6.3		16.2	11.6	
Green Ratio (g		$e^{-11111e}$ ($g c$), s		0.74	0.72		0.72	0.7	_		0.3		0.15	0.15	
Capacity (c), v				327	1363		360	133			260		189	253	
Volume-to-Capa		atio (X)		0.459	0.446		0.180	0.52			_		0.508	0.597	
		t/ln(95 th percentile	;)	51	298	295	23	380		106	126		151	222	
		eh/In (95 th percenti	-	2.1	11.9		0.9	15.	_		5.1		6.0	8.9	
				0.26	0.00	_	0.07	0.0	_		0.00		1.77	0.00	
Uniform Delay (eue Storage Ratio (RQ) (95 th percentile) iform Delay (d 1), s/veh				8.2	8.2	6.9	9.9	9.9	64.4	53.4		60.6	55.6	
	cremental Delay (d 2), s/veh					1.1	0.1	1.5	5 1.5	1.0	0.3		0.9	2.6	
Initial Queue De	ial Queue Delay (d ȝ), s/veh					0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
	ntrol Delay (<i>d</i>), s/veh					9.3	7.0	11.	3 11.4	65.5	53.6		61.5	58.2	
	evel of Service (LOS)					Α	Α	В		E	D		Е	E	
	pproach Delay, s/veh / LOS					Α	11.2	2	В	58.	7	Е	59.5	5	Е
Intersection De	ersection Delay, s/veh / LOS					16	5.3						В		
Multimodal Re	quite				EB			WI	B		NB			SB	
Pedestrian LOS		/LOS		1.87		В	1.87		В	2.3		В	2.31		В
Bicycle LOS Sc				1.61	-	В	1.69		В	0.7		A	0.89	_	A
,													,,,,,,		

ORD 2025-10692 Page 133 of 167

																age 133
	HCS S	Sign	alize	ed Ir	nters	ection	ı Inte	erm	nedia	te Valı	ues			Append	H xib	
General Informati										section	-				1 14 Y4	, ₁ 1,
Agency	GHA								Durat		_	.250				
Analyst	David W		-	_	_	Dec 19,			Area ·	Туре	\rightarrow	Other	r	<u></u>		
Jurisdiction	IDOT		-	e Per		12:00 - 1	1:00 P	M	PHF		_	.94		-0 →	w‡	:
Urban Street	Ogden Avenue		Ana	lysis		2031			Analy	sis Perio	od 1	> 7:0	00	7		
Intersection	Saratoga Avenue		File	Nam	e S	SAT N-B	Build.xı	JS							5 1	
Project Description	SAT No-Build				_		_		_				_	1	ጎ ተ ተ ቀ ካ	777
Demand Informat	ion				EB			V	VB			NB		7	SB	
Approach Moveme	ent			Т	т	R	L	Τ.	т	R	LT	Т	R		Т	R
Demand (v), veh/			14	1	1102	34	61	12	-		32	42	41	90	47	95
										_					ļ.	
Signal Informatio			-		7	7	7 4	2	1 to				_			人
	0.0 Reference Phase	2	-			₹	₹ *	2	542			55	1	♦ 2	3	4
- ,	0 Reference Point	End	Gre	en 3	3.2	2.1	98.3	20	0.9	0.0	.0			Ā		
	No Simult. Gap E/W	On	Yell	ow 3	3.5	0.0	4.5	4.	5 0	0.0	.0		7	7		W
Force Mode Fix	xed Simult. Gap N/S	On	Red	1 0	0.0	0.0	1.5	1.	5 0	0.0 0	.0		5	6	7	8
Saturation Flow /	Delay		Ŧ	Т	R		Т	T	R	1	Т	T	R	L	Т	R
Lane Width Adjustr		1.0	00 1	.000	1.000	1.000	1.00	0	1.000	1.000	1.00	00	1.000	1.000	1.000	1.000
	d Grade Factor (f _{HVg})	1.0	-	.000	1.000	_	1.00	_	1.000	1.000	1.00	_	1.000	0.992	1.000	1.000
	justment Factor (f _p)	1.0	_	.000	1.000		_	\rightarrow	1.000	1.000	1.00	_	1.000	1.000	1.000	1.000
Bus Blockage Adju	• • • • • • • • • • • • • • • • • • • •	1.0	_	.000	1.000			\rightarrow	1.000	1.000	1.00	_	1.000	1.000	1.000	1.000
<u> </u>	, ,	_	_	.000	1.000		-	_	1.000		1.00	_	1.000	1.000	1.000	1.000
Area Type Adjustm	· ,	1.0	-	.000		_	_	_		1.000		\rightarrow			_	1.000
	justment Factor (fLU)	1.0	_		1.000		1.00	_	1.000	1.000	1.00	\rightarrow	1.000	1.000	1.000	1.000
Left-Turn Adjustme		0.9	_	.000	0.000	0.952	0.00	\rightarrow	0.000	0.661	0.00	\rightarrow	0.040	0.694	0.000	0.002
	Turn Adjustment Factor (frr) urn Pedestrian Adjustment Factor (fl.				0.989		0.98	00	0.986	1 000	0.91	10	0.918	1 000	0.893	0.893
	Turn Ped-Bike Adjustment Factor (f				4 000	1.000		+	1.000	1.000		+	1.000	1.000		1.000
	Zone Adjustment Factor (fwz)				1.000		4.00	_	1.000	1 000	4.00	_	1.000	1 000	4.000	1.000
-	actor (fddi)			.000	1.000	_	1.00	\rightarrow	1.000	1.000	1.00	\rightarrow	1.000	1.000	1.000	1.000
	rn Prot. CAV Adj. Factor (fcav,prot)			.000	1.000		1.00		1.000	1.000	1.00	10	1.000	1.000	1.000	1.000
	urn Prot. CAV Adj. Factor (fcav,prot) urn Perm. CAV Adj. Factor (fcav,pem)					1.00	\vdash	+		1.00	-	+		1.00		+
	ion Flow Rate (s), veh/h	10	10 1	3667	112	1010	362	7	116	1256	004	,	962	1319	EG1	1125
	cles Arriving on Green (P)	18	-	0.72	0.72	1810 0.02	_	_	146		88	_	862	0.15	561	1135
•		0.0	_	0.72		0.02	0.70	_	0.70	0.15	0.1	_	0.15	0.15	0.15	0.15
Incremental Delay	racioi (k)	0.0)4 (J.5U	0.50	0.04	0.5	J	0.50	0.04	0.0	4		0.04	0.13	
Signal Timing / M	ovement Groups	т	EBL	E	BT/R	WE	3L	WI	BT/R	NBI		NE	3T/R	SBL		SBT/R
Lost Time (t _L)			3.5		6.0	3.5	5	6	6.0			6	6.0			6.0
Green Ratio (g/C)		().74		0.72	0.7	2	0	.70			0	.15			0.15
Permitted Saturation	on Flow Rate (<i>s_p</i>), veh/h/lr		392		0	470	0		0			12	256			1319
Shared Saturation	Flow Rate (ssh), veh/h/ln	Т														
Permitted Effective	Green Time (gp), s	9	98.9		0.0	98.	3	(0.0			2	0.9			20.9
Permitted Service	ermitted Service Time (g_u) , s				0.0	79.	8	(0.0			ç	9.3			14.6
Permitted Queue S	rmitted Queue Service Time (g_{ps}) , s					3.0)					7	7.2			9.8
Time to First Block	ne to First Blockage (<i>gr</i>), s				0.0	0.0		C	0.0			C	0.0			0.0
	eue Service Time Before Blockage (gfs),															
	ected Right Saturation Flow (s _R), veh/h															
	ected Right Effective Green Time (g_R) ,															
J. J. J. J. J. Harrit L.				EB			W	 В			NE	3			SB	
					0.000	1.19			000	1.55	-		000	1.55	_	0.000
Multimodal							-	٥.			\rightarrow					
Multimodal Pedestrian F_w / F_v					0.069	0.00	00	0	073	0.00	0	Ω	157 l	0.000		0.157
Multimodal Pedestrian F_w / F_v Pedestrian F_s / F_{de}	•	_	.000	C	0.069	0.00	_	0.	073	0.00	_	0.	157	0.00		0.157
Multimodal Pedestrian F_w / F_v	•	0	.000).00 34.45		5.60	0.00 0.0 1404	0		.21	0.00 0.00 298.5			157 0.66	0.000 0.00 298.5		0.157 50.66

38

ORD 2025-10692 Page 134 of 167

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ---

Copyright © 2024 University of Florida, All Rights Reserved.

HCS™ Streets Version 2024 SAT Existing.xus

ORD 2025-10692 Page 136 of 167

			HCS	Signa	lized	Inters	sectio	n In	put Da	ta		,	Append	ix H	
	4.								1.4		4.			4741	THE STATE OF THE S
General Inform	ation	0.14							Intersec				Í	ΑĻ	
Agency		GHA				I			Duration	<u>, </u>	0.250		2		
Analyst		David W				Dec 1			Area Typ	е	Other			w∱s	<u> </u>
Jurisdiction		IDOT		Time F			- 1:00 F	PM	PHF		0.94		4	W † E	7
Urban Street		Ogden Avenue		Analys					Analysis	Period	1> 7:0	00	7		4
Intersection		Saratoga Avenue		File Na	ame	SAT T	otal.xus							5 %	
Project Descript	ion	SAT Total	_	_	_	_	_	_		_	_	_		4 1 4 Y 1	* ^
Demand Inform	nation				EB		7	W	В	1	NB		T	SB	
Approach Move	ment			L	Т	R	L	T	R		Т	R	L	Т	R
Demand (v), ve				145	1138		61	13	_	66	42	41	90	47	99
Signal Informat	tion					iowe.			3						1
Cycle, s	140.0	Reference Phase	2	1	7 8			- T	542		K		4		Φ
Offset, s	0	Reference Point	End	Green	3 2	2.2	98.1	21	:11	0.0		1	Y 2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Yellow		0.0	4.5	4.5		0.0		<i>></i>	→		KÎZ
Force Mode	Fixed	Simult. Gap N/S	On	Red	0.0	0.0	1.5	1.5		0.0		5	6	7	8
Traffic Informat	tion				EB			WE			NB			SB	
Approach Move				L	Т	R	L	Т	R	L	Т	R	L	T	R
Demand (<i>v</i>), veh				145	1138	38	61	130	3 51	66	42	41	90	47	99
Initial Queue (Q				0	0	0	0	0	0	0	0	0	0	0	0
Base Saturation	Flow F	Rate (<i>s</i> ₀), veh/h		1900	1900	1900	1900	190	1900	1900	1900	1900	1900	1900	1900
Parking (N _m), ma	an/h				None			Non	е		None			None	
Heavy Vehicles	(<i>P</i> _{HV}), ⁹	%		0	0		0	0		0	0		1	0	
Ped / Bike / RTC	OR, /h			0	0	0	0	0	0	0	0	0	0	0	0
Buses (Nb), buse	Type (AT)				0	0	0	0	0	0	0	0	0	0	0
Arrival Type (AT	am Filtering (/)				3	3	3	3	3	3	3	3	3	3	3
Upstream Filteri	<u> </u>				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lane Width (W	y Length, ft				12.0		12.0	12.0)	12.0	12.0		12.0	12.0	
Turn Bay Length	y Length, ft				0		315	0		85	0		85	0	
Grade (Pg), %	Pg), %				0			0			0			0	
Speed Limit, mi/					35	35	35	35	35	35	35	35	35	35	35
Discontinuo				EDI	-	EDT	\A/DI		WDT	NDI		NDT	ODI		ODT
Phase Informat) Di Olit		EBL	_	EBT	WBI	_	WBT	NBI	_	NBT	SBL	-	SBT
		or Phase Split, s		13.0	_	100.0	13.0	_	100.0	-	-	27.0	_	_	27.0
Yellow Change I		· ·		3.5	-	4.5	3.5	-	4.5	-	_	4.5	_	+	4.5
Red Clearance I				0.0		1.5	0.0	-	1.5	-	_	1.5	_	_	1.5
Minimum Green Start-Up Lost Tir				2.0		15 2.0	2.0		15 2.0	2.0		2.0	2.0	-	2.0
Extension of Effe				2.0	_	2.0	2.0	_	2.0	2.0		2.0	2.0	_	2.0
		310011 (G), 3		2.0	_	2.0	2.0	_	2.0	2.0		2.0	2.0		2.0
Recall Mode	assage (<i>PT</i>), s ecall Mode				+	Min	Off	\rightarrow	Min			Off			Off
Dual Entry						Yes	No	_	Yes			Yes			Yes
	ılk (<i>Walk</i>), s					0.0	148		0.0			0.0			0.0
	destrian Clearance Time (<i>PC</i>), s					0.0		+	0.0			0.0			0.0
	timodal Information							WB			NB			SB	
	6 Speed / Rest in Walk / Corner Radius					25.0	0.0	No	_	0.0	No	25.0	0.0	No	25.0
		Vidth / Length, ft		9.0	12.0	0.0	9.0	12.0		9.0	12.0	0.0	9.0	12.0	0.0
Street Width / Is				0.0	0	No	0.0	0	No	0.0	0	No	0.0	0	No
		ane / Shoulder, ft		12.0	5.0	2.0	12.0	5.0		12.0	5.0	2.0	12.0	5.0	2.0
Pedestrian Sign	al / Occ	cupied Parking		No		0.50	No		0.50	No		0.50	No		0.50

Page 137 of 167 ORD 2025-10692

		HCS	S Sigr	nalize	d Int	ersect	ion R	esu	Its S	Sum	mary	•		Append	lix H	
General Inform	nation								Intor	react	ion Info	ormati	n n	Γ.	14741	يا لي
	iation	GHA							Dura			0.250			41	
Agency		David W		Analys	sia Dat	o Doo 1	0.2024					Other				E.
Analyst Jurisdiction		IDOT		Time F		e Dec 1	- 1:00 F		Area PHF)	0.94			w∳E	∴
Urban Street		Ogden Avenue		Analys			- 1.00 F	-IVI			Period	1> 7:	00			<u>-</u>
Intersection		Saratoga Avenue		File Na			otal.xus		Anaiy	ysis i	Periou	177.	00	-		C.
Project Descrip	tion	SAT Total		File IN	ame	SALI	otal.xus	•						- 4) /	7 4
1 Toject Bescrip	uon	O/ (1 Total														
Demand Inform	nation				EB			٧	/B			NB			SB	
Approach Move	ement			L	Т	R	L		T	R	L	Т	R	L	Т	R
Demand (v), v	eh/h			145	113	8 38	61	13	303	51	66	42	41	90	47	99
Signal Informa	tion				1	_	1	.	li l		_					
Cycle, s	140.0	Reference Phase	2	1	7	~~?	7	777	is					л		◮
Offset, s	0	Reference Point	End		,	R	3		17			375	1	Y 2	3	4
Uncoordinated	No	Simult. Gap E/W	On	Green		2.2	98.1			0.0	0.0		_	4		
Force Mode	Fixed	Simult. Gap E/W	On	Yellow Red	0.0	0.0	4.5 1.5	4. 1.		0.0	0.0			6	7	Y.
1 orce wode	TIXCU	Ollifult. Cap 14/C	OII	itteu	0.0	10.0	1.0	1.	J	0.0	0.0					
Timer Results				EBI	_	EBT	WB	L	WB ⁻	Т	NBL	_	NBT	SBI		SBT
Assigned Phase	е			5		2	1		6				8		\top	4
Case Number				1.1		4.0	1.1		4.0				6.0			6.0
Phase Duration	ı, s			8.9		106.3	6.7		104.	.1			27.0			27.0
Change Period,	, (Y+R	c), S		3.5		6.0	3.5		6.0)			6.0			6.0
Max Allow Head	Allow Headway (MAH), s					0.0	3.1		0.0				3.3			3.3
Queue Clearan	ue Clearance Time (g $_{ extstyle s}$), $ extstyle s$						3.4						21.8			18.2
	en Extension Time (g $_{ extstyle e}$), s					0.0	0.0	\rightarrow	0.0				0.0			0.3
	se Call Probability						0.92	\rightarrow					1.00			1.00
Max Out Probal	se Call Probability Out Probability						0.0	1					1.00			1.00
Movement Gro	,				EB			W	R			NB			SB	
Approach Move	vement Group Results				T	R	L	T		R	L	T	R	L	T	R
Assigned Move				5	2	12	1	6	_	16	3	8	18	7	4	14
Adjusted Flow F), veh/h		154	629	622	65	72	_	16	70	88		96	155	
		ow Rate (s), veh/h/l	n	1810	1900		1810	190	_	374	1251	1745		1319	1693	
Queue Service				3.3	19.6		1.4	25.		5.9	7.8	6.3		9.8	12.0	
Cycle Queue C	learanc	e Time (<i>g c</i>), s		3.3	19.6	19.7	1.4	25.	8 25	5.9	19.8	6.3		16.2	12.0	
Green Ratio (g	/C)			0.74	0.72	0.72	0.72	0.7	0 0.	.70	0.15	0.15		0.15	0.15	
Capacity (c), v	/eh/h			315	1361	1346	346	133	13	313	132	262		190	254	
Volume-to-Capa				0.489	0.462	0.462	0.187	0.54	_	546	0.533	0.337		0.505	0.611	
		t/ln (95 th percentile		53	312	309	24	39	_	96	115	126		151	228	
	· ,	eh/ln (95 th percenti		2.1 0.27	12.5		0.9	15.	_	5.8	4.6	5.1		6.0	9.1	
	eue Storage Ratio (RQ) (95 th percentile)				0.00	_	0.07	0.0	_	.00	1.35	0.00		1.77	0.00	-
	iform Delay (d 1), s/veh				8.4	8.4	7.1	10.	_	0.2	65.0	53.3		60.5	55.7	-
	remental Delay (d 2), s/veh ial Queue Delay (d 3), s/veh				0.0	1.1	0.1	1.6	_	.6	2.2	0.3		0.9	3.1	-
	tial Queue Delay (d ₃), s/veh ontrol Delay (d), s/veh					9.6	7.2	0.0	_).0 1.8	0.0 67.1	0.0 53.6		0.0 61.4	0.0 58.8	
	• ()				9.5 A	9.6 A	7.2 A	П. В	\rightarrow	1.8 B	67.1	D		61.4 E	58.8 E	
	evel of Service (LOS) pproach Delay, s/yeh / LOS					A	11.6		В	-	59.6		E	59.8		E
	oproach Delay, s/veh / LOS tersection Delay, s/veh / LOS						6.7		U		00.0		_	В		_
	,, <u>_</u> ,, _															
Multimodal Re	sults				EB			W	В			NB			SB	
Pedestrian LOS	Score	/LOS		1.87	7	В	1.87	7	В		2.31		В	2.3	1	В
Bicycle LOS Sc	ore / LC	os		1.65	5	В	1.73	3	В		0.75	5	Α	0.90)	Α

ORD 2025-10692 Page 138 of 167

		HCS	Sign	aliz	ed li	nters	ectior	ı Int	ern	nedia	te Val	ues			Append	H xib	
General Inform	nation									Intor	section	Infor	mati	ion			l la la
Agency	iation	GHA									tion, h	17	0.25			41	
Analyst		David W		Δn	alveie	Data	Dec 19,	2024		Area	· · · · · · · · · · · · · · · · · · ·		Othe		4		
Jurisdiction		IDOT		-	aiysis ne Pei	$\overline{}$	12:00 - 1) N /I	PHF	туре	\rightarrow	0.94		= -1	w¦̃E	.
Urban Street		Ogden Avenue		-		_	2031	1.00 F	IVI		/sis Peri	$\overline{}$	0.9 4 1> 7		-() - v		-
Intersection		Saratoga Avenue		-	aiysis e Nam	\rightarrow	SAT Tota	al vue		Allaiy	/SIS F CI	lou	1 / 1	.00	-		
Project Descrip		SAT Total		1 110	INAII	ic [OAT TOLO	ai.Aus							- '	ነব ሰቀ ¹	7 17 17
				_													
Demand Inform						EB T	R	L	_	VB T	R	L	NB T	R	+-	SB T	R
				-		1138	38	61	_	-		66	42	_	90	47	
Demand (v), v	en/n	_		12	45	1138	36	וט	1.	303	וס	00	42	41	90	47	99
Signal Informa	ation							- 5		Usa I							
Cycle, s	140.0	Reference Phase	2		-	2 6	≓	-		542			0	<u>-</u>	4		4
Offset, s	0	Reference Point	End	Gr	een 3	3 2	2.2	98.1	12	:11	0.0	0.0		1	¥ 2	3	
Uncoordinated	No	Simult. Gap E/W	On		llow 3			4.5				0.0		7	>		st.
Force Mode	Fixed	Simult. Gap N/S	On	Re		0.0		1.5				0.0		5	6	7	<u> </u>
Saturation Flo	w / Dala	NV			Т	R	L	Т		R		Т	-	R	L	Т	R
Lane Width Adj		•	1.0	\rightarrow	1.000			1.00	_	1.000	1.000		-	1.000	1.000	1.000	1.000
,		ade Factor (f _{HVg})	1.0	\rightarrow	1.000	_		-	_	1.000	1.000	_	-	1.000	0.992	1.000	
Parking Activity		, -,	1.0	$\overline{}$	1.000	\leftarrow		-	\rightarrow	1.000	1.000	_	\rightarrow	1.000	1.000	1.000	
Bus Blockage A			1.0	_	1.000	1.000		1.00	_	1.000	1.000	_	\rightarrow	1.000	1.000	1.000	1.000
Area Type Adju	-	, <i>,</i>	1.0	$\overline{}$	1.000			1.00	\rightarrow	1.000	1.000	-	\rightarrow	1.000	1.000	1.000	1.000
* * * * * * * * * * * * * * * * * * * *		nent Factor (fLU)	1.0	$\overline{}$	1.000	1.000		1.00	\rightarrow	1.000	1.000		\rightarrow	1.000	1.000	1.000	
	•	, ,	0.9	\rightarrow	0.000		0.952	0.00	\rightarrow	1.000	0.658		\rightarrow	1.000	0.694	0.000	
	Turn Adjustment Factor (f∟τ) -Turn Adjustment Factor (fʀτ) Turn Pedestrian Adjustment Factor (f∟			$\overline{}$	0.988	+		0.98	\rightarrow	0.987	0.000	0.9	\rightarrow	0.918	0.001	0.891	0.891
	Turn Pedestrian Adjustment Factor (f			00		0.000	1.000	0.01	-	0.00.	1.000			0.0.0	1.000	0.00	0.00
	t-Turn Ped-Bike Adjustment Factor (<i>fr</i>			_		1.000				1.000		+		1.000			1.000
	Zone Adjustment Factor (fwz)			00	1.000	1.000		1.00	00	1.000	1.000	1.0	00	1.000	1.000	1.000	1.000
DDI Factor (fooi	actor (fdd)			\rightarrow	1.000			1.00	\rightarrow	1.000	1.000	_	\rightarrow	1.000	1.000	1.000	1.000
`	actor (fdd) urn Prot. CAV Adj. Factor (fcav,prot)			00			1.00	\vdash	\neg			\dagger					
	urn Prot. CAV Adj. Factor (fcav,prot) urn Perm. CAV Adj. Factor (fcav,perm)			\neg			1		一		1.00				1.00		
		low Rate (s), veh/h	18	10	3656	122	1810	363	33	142	1251	88	33	862	1319	545	1148
Proportion of Ve	ehicles A	Arriving on Green (P)	0.0	04	0.72	0.72	0.02	0.7	0	0.70	0.15	0.	15	0.15	0.15	0.15	0.15
Incremental De	lay Fact	or (<i>k</i>)	0.0	04	0.50	0.50	0.04	0.5	0	0.50	0.07	0.0)4		0.04	0.14	
Signal Timing	/ Mayor	ment Crouns	-	EDI.		EBT/R	١٨/٦	21	١٨.	BT/R	NE) I	NI	BT/R	SBI	-	SBT/R
Lost Time (t _L)	/ Wover	nent Groups	_	3.5		6.0	3.5	\rightarrow		6.0	NE	DL		6.0	SBI	-	6.0
Green Ratio (g/	(C)		_	0.74		0.72	0.7	_).70).15			0.15
,-		ow Rate (s _ρ), veh/h/l	_	376		0	45	_		0				251			1319
		/ Rate (<i>s</i> sh), veh/h/ln					1										
				98.8		0.0	98.	1		0.0			2	21.0			21.0
	ermitted Effective Green Time (g_p) , s ermitted Service Time (g_u) , s			72.1		0.0	78.	_		0.0				9.0			14.7
	ermitted Queue Service Time $(g_{\rho s})$, s			18.5	_		3.3	$\overline{}$						7.8		\neg	9.8
	me to First Blockage (g_f), s			0.0		0.0	0.0			0.0				0.0			0.0
	eue Service Time Before Blockage (gfs),						1	\neg									
	tected Right Saturation Flow (s_R), veh/h/																
Protected Right	ected Right Effective Green Time (g_R) ,							\neg									
Multimodal					EB			W	/B			N	В			SB	
Pedestrian F _w /				.198		0.000	1.19			.000	1.5			.000	1.55		0.000
Pedestrian F _s /			_	.000	_	0.069	0.00	_		.074	0.0	_		.157	0.00	_	0.157
Pedestrian Mcor			_	0.00			0.0	_			0.0				0.00		
			_	32.9	2	5.63	1401	\rightarrow	6	5.27	300.		5	0.58	300.0	_	50.58
Bicycle c _b / d _b			14	02.0	_	0.00	1101		•	··-·							

43

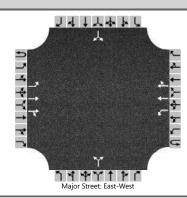
ORD 2025-10692 Page 139 of 167

--- Messages ---

Generated: 12/19/2024 10:29:07 AM

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ---

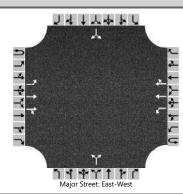

Copyright © 2024 University of Florida, All Rights Reserved.

HCS™ Streets Version 2024 **SAT Existing.xus**

ORD 2025-10692 Page 141 of 167

	HCS Two-Way Stop	-Control Report	Appendix H
General Information		Site Information	
Analyst	David W	Intersection	Ogden Avenue at Linscott Ave/East Site Dr
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	12/18/2024	East/West Street	Ogden Avenue
Analysis Year	2024	North/South Street	Linscott Ave
Time Analyzed	7:30-8:30 AM	Peak Hour Factor	0.96
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	AM Existing		

Lanes

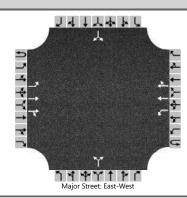

Approach	$\overline{}$	Fasth	ound			Westl	oound			North	bound			South	bound					
Movement	U	L	Т	R	U	L	T	R	U	L	Т	R	U		7.50					
Priority	1U	1	2	3	4U	4	5	6		7	8	9			-	R 12				
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0				0				
Configuration	"	L	T	TR		L	T	TR			LR	_		_						
Volume (veh/h)	0	6	1448	2	0	0	1150	4		1		6		0		6				
Percent Heavy Vehicles (%)	0	0			0	0				0		0				0				
Proportion Time Blocked																				
Percent Grade (%)))				0					
Right Turn Channelized																				
Median Type Storage		Undivided																		
Critical and Follow-up H	eadwa	ys																		
Base Critical Headway (sec)		4.1				4.1				7.5		6.9		7.5		6.9				
Critical Headway (sec)		4.10				4.10				7.50		6.90		7.50		6.90				
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3		3.5		3.3				
Follow-Up Headway (sec)		2.20				2.20				3.50		3.30		3.50		3.30				
Delay, Queue Length, an	d Leve	l of Se	ervice																	
Flow Rate, v (veh/h)	Τ	6				0					7				6					
Capacity, c (veh/h)		588				449					135				448					
v/c Ratio		0.01				0.00					0.05				0.01					
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.2				0.0					
95% Queue Length, Q ₉₅ (ft)		0.0									5.0				0.0					
Control Delay (s/veh)		11.2				13.0					33.3				13.1					
Level of Service (LOS)		В				В					D				В					
Approach Delay (s/veh)		0	.0			0	.0			33	3.3			13	3.1					
Approach LOS		,	Ą			,	4			[)			ı	В					

Generated: 12/18/2024 3:54:06 PM

ORD 2025-10692 Page 142 of 167

	HCS Two-Way Stop	-Control Report	Appendix H
General Information		Site Information	
Analyst	David W	Intersection	Ogden Avenue at Linscott Ave/East Site Dr
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	12/18/2024	East/West Street	Ogden Avenue
Analysis Year	2031	North/South Street	Linscott Ave
Time Analyzed	7:30-8:30 AM	Peak Hour Factor	0.96
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	AM No-Build		

Lanes

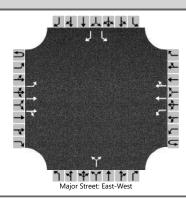

Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0
Configuration		L	Т	TR		L	т	TR			LR				LR	
Volume (veh/h)	0	6	1506	2	0	0	1204	4		1		6		0		6
Percent Heavy Vehicles (%)	0	0			0	0				0		0		0		0
Proportion Time Blocked																
Percent Grade (%)										()				0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.5		6.9		7.5		6.9
Critical Headway (sec)		4.10				4.10				7.50		6.90		7.50		6.90
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3		3.5		3.3
Follow-Up Headway (sec)		2.20				2.20				3.50		3.30		3.50		3.30
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)	Т	6				0					7				6	
Capacity, c (veh/h)		560				425					119				430	
v/c Ratio		0.01				0.00					0.06				0.01	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.2				0.0	
95% Queue Length, Q ₉₅ (ft)		0.0									5.0				0.0	
Control Delay (s/veh)		11.5				13.5					37.2				13.5	
Level of Service (LOS)		В				В					E				В	
Approach Delay (s/veh)		0	.0			0	.0			37	7.2			13	3.5	
Approach LOS			Ą			,	4				E E				В	

Generated: 12/18/2024 3:56:32 PM

ORD 2025-10692 Page 143 of 167

	HCS Two-Way Stop	-Control Report	Appendix H
General Information		Site Information	
Analyst	David W	Intersection	Ogden Avenue at Linscott Ave/East Site Dr
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	12/18/2024	East/West Street	Ogden Avenue
Analysis Year	2031	North/South Street	Linscott Ave
Time Analyzed	7:30-8:30 AM	Peak Hour Factor	0.96
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	AM Total		

Lanes

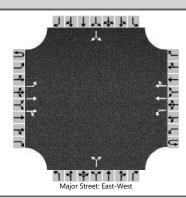

Approach		Fasth	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	T	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0
Configuration		L	T	TR		L.	T	TR			LR	0		0	LR	
Volume (veh/h)	0	35	1506	2	0	0	1204	41		1	LIX	6		28	LIX	35
Percent Heavy Vehicles (%)	0	0	1300		0	0	1204	41		0		0		0		0
	0	0			0	0						0		U		0
Proportion Time Blocked															^	
Percent Grade (%)	+									()				0	
Right Turn Channelized	+															
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.5		6.9		7.5		6.9
Critical Headway (sec)		4.10				4.10				7.50		6.90		7.50		6.90
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3		3.5		3.3
Follow-Up Headway (sec)		2.20				2.20				3.50		3.30		3.50		3.30
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)	Т	36				0					7				66	
Capacity, c (veh/h)		541				425					98				55	
v/c Ratio		0.07				0.00					0.07				1.20	
95% Queue Length, Q ₉₅ (veh)		0.2				0.0					0.2				5.7	
95% Queue Length, Q ₉₅ (ft)		5.0									5.0				142.5	
Control Delay (s/veh)		12.1				13.5					44.9				309.8	
Level of Service (LOS)		В				В					Е				F	
Approach Delay (s/veh)		0	.3			0	.0			44	1.9			30	9.8	
Approach LOS			Α				Α				<u> </u>				F	

Generated: 12/18/2024 3:58:37 PM

ORD 2025-10692 Page 144 of 167

	Appendix H					
General Information		Site Information				
Analyst	David W	Intersection	Ogden Avenue at Linscott Ave/East Site Dr			
Agency/Co.	GHA	Jurisdiction	IDOT			
Date Performed	12/18/2024	East/West Street	Ogden Avenue			
Analysis Year	2031	North/South Street	Linscott Ave			
Time Analyzed	7:30-8:30 AM	Peak Hour Factor	0.96			
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25			
Project Description	AM Total W/ Left Turn Lane					

Lanes

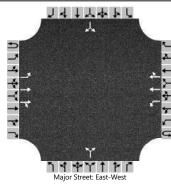

Approach	Т	Eastbound				Westbound			Northbound				Southbound				
Movement	U L T R			U L T R			U L T R			U L T R							
	+	1		3	4U	4	5	6	0	7	8	9	U	_		-	
Priority	10	_	2	_		_	_			-		_		10	11	12	
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		1	0	1	
Configuration		L	Т	TR		L	Т	TR			LR	_		L		R	
Volume (veh/h)	0	35	1506	2	0	0	1204	41		1		6		28		35	
Percent Heavy Vehicles (%)	0	0			0	0				0		0		0		0	
Proportion Time Blocked																	
Percent Grade (%)									0			0					
Right Turn Channelized													No				
Median Type Storage		Undivided															
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)		4.1				4.1				7.5		6.9		7.5		6.9	
Critical Headway (sec)		4.10				4.10				7.50		6.90		7.50		6.90	
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3		3.5		3.3	
Follow-Up Headway (sec)	Т	2.20				2.20				3.50		3.30		3.50		3.30	
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)	Т	36				0					7			29		36	
Capacity, c (veh/h)		541				425					98			26		418	
v/c Ratio		0.07				0.00					0.07			1.11		0.09	
95% Queue Length, Q ₉₅ (veh)		0.2				0.0					0.2			3.5		0.3	
95% Queue Length, Q ₉₅ (ft)		5.0									5.0			87.5		7.5	
Control Delay (s/veh)		12.1				13.5					44.9			431.3		14.4	
Level of Service (LOS)		В				В					E			F		В	
Approach Delay (s/veh)		0.3			0.0			44.9			199.7						
Approach LOS		А			А			E			F						

Generated: 12/20/2024 12:12:53 PM

ORD 2025-10692 Page 145 of 167

	HCS Two-Way Stop	-Control Report	Appendix H
General Information		Site Information	
Analyst	David W	Intersection	Ogden Avenue at Linscott Ave/East Site Dr
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	12/18/2024	East/West Street	Ogden Avenue
Analysis Year	2024	North/South Street	Linscott Ave
Time Analyzed	4:30-5:30 PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	PM Existing		

Lanes

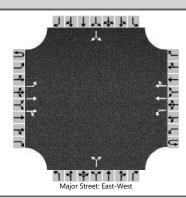

Approach	Т	Fasth	ound			Westl	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0	
Configuration		L	Т	TR		L	T	TR			LR				LR		
Volume (veh/h)	0	2	1305	2	0	1	1686	0		1		1		0		7	
Percent Heavy Vehicles (%)	0	0			0	0				0		0		0		0	
Proportion Time Blocked																	
Percent Grade (%))				0		
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)		4.1				4.1				7.5		6.9		7.5		6.9	
Critical Headway (sec)		4.10				4.10				7.50		6.90		7.50		6.90	
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3		3.5		3.3	
Follow-Up Headway (sec)		2.20				2.20				3.50		3.30		3.50		3.30	
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)	Τ	2				1					2				7		
Capacity, c (veh/h)		355				505					41				291		
v/c Ratio		0.01				0.00					0.05				0.03		
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.2				0.1		
95% Queue Length, Q ₉₅ (ft)		0.0				0.0					5.0				2.5		
Control Delay (s/veh)		15.2				12.1					96.6				17.7		
Level of Service (LOS)		С				В					F				С		
Approach Delay (s/veh)		0	.0			0	.0			96	5.6		17.7				
Approach LOS		,	Ą			,	4				=			С			

Generated: 12/18/2024 4:04:59 PM

ORD 2025-10692 Page 146 of 167

	HCS Two-Way Stop	o-Control Report	Appendix H
General Information		Site Information	
Analyst	David W	Intersection	Ogden Avenue at Linscott Ave/East Site Dr
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	12/18/2024	East/West Street	Ogden Avenue
Analysis Year	2031	North/South Street	Linscott Ave
Time Analyzed	4:30-5:30 PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	PM No-Build		

Lanes

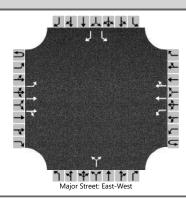

					,											
Vehicle Volumes and Adj	justme	nts														
Approach		Eastb	ound			Westl	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0
Configuration		L	Т	TR		L	Т	TR			LR				LR	
Volume (veh/h)	0	2	1358	2	0	1	1747	0		1		1		0		7
Percent Heavy Vehicles (%)	0	0			0	0				0		0		0		0
Proportion Time Blocked																
Percent Grade (%)											0				0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.5		6.9		7.5		6.9
Critical Headway (sec)		4.10				4.10				7.50		6.90		7.50		6.90
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3		3.5		3.3
Follow-Up Headway (sec)		2.20				2.20				3.50		3.30		3.50		3.30
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т	2				1					2				7	
Capacity, c (veh/h)		336				481					36				277	
v/c Ratio		0.01				0.00					0.06				0.03	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.2				0.1	
95% Queue Length, Q ₉₅ (ft)		0.0				0.0					5.0				2.5	
Control Delay (s/veh)		15.8				12.5					112.4		Ì		18.3	
Level of Service (LOS)		С				В					F				С	
Approach Delay (s/veh)	Ì	0	0.0		Ì	0	.0			11	2.4		Ì	18	3.3	
Approach LOS	A A F C								С							

Generated: 12/18/2024 4:08:17 PM

ORD 2025-10692 Page 147 of 167

	HCS Two-Way Stop	-Control Report	Appendix H
General Information		Site Information	
Analyst	David W	Intersection	Ogden Avenue at Linscott Ave/East Site Dr
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	12/18/2024	East/West Street	Ogden Avenue
Analysis Year	2031	North/South Street	Linscott Ave
Time Analyzed	4:30-5:30 PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	PM Total		

Lanes

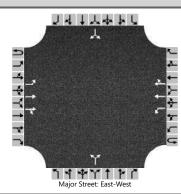

Approach	$\overline{}$	Fasth	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	T	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0
Configuration		L	Т	TR		L	T	TR			LR				LR	
Volume (veh/h)	0	28	1364	2	0	1	1750	34		1		1		28		36
Percent Heavy Vehicles (%)	0	0			0	0				0		0		0		0
Proportion Time Blocked																
Percent Grade (%)										()				0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.5		6.9		7.5		6.9
Critical Headway (sec)		4.10				4.10				7.50		6.90		7.50		6.90
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3		3.5		3.3
Follow-Up Headway (sec)		2.20				2.20				3.50		3.30		3.50		3.30
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)	Τ	29				1					2				67	
Capacity, c (veh/h)		324				478					25				23	
v/c Ratio		0.09				0.00					0.08				2.93	
95% Queue Length, Q ₉₅ (veh)		0.3				0.0					0.3				8.5	
95% Queue Length, Q ₉₅ (ft)		7.5				0.0					7.5				212.5	
Control Delay (s/veh)		17.2				12.5					160.0				1223.8	
Level of Service (LOS)		С				В					F				F	
Approach Delay (s/veh)		0	.3			0	.0			16	0.0		1223.8			
Approach LOS		,	Ą			,	4				=					

Generated: 12/18/2024 4:12:50 PM

ORD 2025-10692 Page 148 of 167

	HCS Two-Way Stop	-Control Report	Appendix H
General Information		Site Information	
Analyst	David W	Intersection	Ogden Avenue at Linscott Ave/East Site Dr
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	12/18/2024	East/West Street	Ogden Avenue
Analysis Year	2031	North/South Street	Linscott Ave
Time Analyzed	4:30-5:30 PM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	PM Total w/ Left Turn Lane		

Lanes

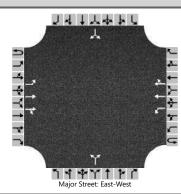


Approach	Т	Fasth	ound			Westl	nound			North	hound			South	hound		
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R	
	+	1		3	4U	4	5	6		7	8	9	0	_			
Priority	10	_	2	_			_			-		_		10	11	12	
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		1	0	1	
Configuration	-	L	Т	TR		L	Т	TR			LR			L		R	
Volume (veh/h)	0	28	1364	2	0	1	1750	34		1		1		28		36	
Percent Heavy Vehicles (%)	0	0			0	0				0		0		0		0	
Proportion Time Blocked																	
Percent Grade (%)		0 0)					
Right Turn Channelized											No						
Median Type Storage				Undi	vided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)		4.1				4.1				7.5		6.9		7.5		6.9	
Critical Headway (sec)		4.10				4.10				7.50		6.90		7.50		6.90	
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3		3.5		3.3	
Follow-Up Headway (sec)		2.20				2.20				3.50		3.30		3.50		3.30	
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)		29				1					2			29		38	
Capacity, c (veh/h)		324				478					25			11		269	
v/c Ratio		0.09				0.00					0.08			2.79		0.14	
95% Queue Length, Q ₉₅ (veh)		0.3				0.0					0.3			4.7		0.5	
95% Queue Length, Q ₉₅ (ft)		7.5				0.0					7.5			117.5		12.5	
Control Delay (s/veh)		17.2				12.5					160.0			1515.5		20.6	
Level of Service (LOS)		С				В					F			F		С	
Approach Delay (s/veh)		0	.3			0	.0			16	0.0						
Approach LOS			Α				A				 F			F			

ORD 2025-10692 Page 149 of 167

	HCS Two-Way Stop	-Control Report	Appendix H
General Information		Site Information	
Analyst	David W	Intersection	Ogden Avenue at Linscott Ave/East Site Dr
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	12/18/2024	East/West Street	Ogden Avenue
Analysis Year	2024	North/South Street	Linscott Ave
Time Analyzed	12:00-1:00 PM	Peak Hour Factor	0.94
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	SAT Existing		

Lanes

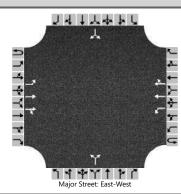

Approach		Eastb	ound			Westl	ound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0
Configuration		L	Т	TR		L	Т	TR			LR				LR	
Volume (veh/h)	0	2	1214	1	0	0	1370	2		0		4		11		8
Percent Heavy Vehicles (%)	0	0			0	0				0		0		0		0
Proportion Time Blocked																
Percent Grade (%)		0 0										0				
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.5		6.9		7.5		6.9
Critical Headway (sec)		4.10				4.10				7.50		6.90		7.50		6.90
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3		3.5		3.3
Follow-Up Headway (sec)		2.20				2.20				3.50		3.30		3.50		3.30
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		2				0					4				20	
Capacity, c (veh/h)		469				543					419				48	
v/c Ratio		0.00				0.00					0.01				0.42	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.0				1.5	
95% Queue Length, Q ₉₅ (ft)		0.0									0.0				37.5	
Control Delay (s/veh)		12.7				11.6					13.7				125.9	
Level of Service (LOS)		В				В					В				F	
Approach Delay (s/veh)		0	.0			0	.0			13	3.7		125.9			
Approach LOS			Ą			,	4			E	3					

Generated: 12/18/2024 4:25:09 PM

ORD 2025-10692 Page 150 of 167

	HCS Two-Way Stop	-Control Report	Appendix H
General Information		Site Information	
Analyst	David W	Intersection	Ogden Avenue at Linscott Ave/East Site Dr
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	12/18/2024	East/West Street	Ogden Avenue
Analysis Year	2031	North/South Street	Linscott Ave
Time Analyzed	12:00-1:00 PM	Peak Hour Factor	0.94
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	SAT No-Build		

Lanes

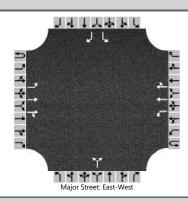

Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0
Configuration		L	Т	TR		L	Т	TR			LR				LR	
Volume (veh/h)	0	2	1262	1	0	0	1417	2		0		4		11		8
Percent Heavy Vehicles (%)	0	0			0	0				0		0		0		0
Proportion Time Blocked																
Percent Grade (%)										()				0	
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.5		6.9		7.5		6.9
Critical Headway (sec)		4.10				4.10				7.50		6.90		7.50		6.90
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3		3.5		3.3
Follow-Up Headway (sec)		2.20				2.20				3.50		3.30		3.50		3.30
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		2				0					4				20	
Capacity, c (veh/h)		449				519					403				42	
v/c Ratio		0.00				0.00					0.01				0.48	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.0				1.7	
95% Queue Length, Q ₉₅ (ft)		0.0									0.0				42.5	
Control Delay (s/veh)		13.1				11.9					14.0				151.7	
Level of Service (LOS)		В				В					В				F	
Approach Delay (s/veh)		0	.0			0	.0			14	1.0		151.7			
Approach LOS		,	Α			,	Α			E	3					

Generated: 12/18/2024 4:30:02 PM

ORD 2025-10692 Page 151 of 167

	HCS Two-Way Stop	-Control Report	Appendix H
General Information		Site Information	
Analyst	David W	Intersection	Ogden Avenue at Linscott Ave/East Site Dr
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	12/18/2024	East/West Street	Ogden Avenue
Analysis Year	2031	North/South Street	Linscott Ave
Time Analyzed	12:00-1:00 PM	Peak Hour Factor	0.94
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	SAT Total		

Lanes

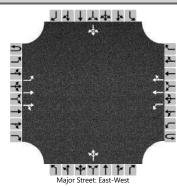

Approach		Eastb	ound			Westl	ound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0	
Configuration		L	Т	TR		L	Т	TR			LR				LR		
Volume (veh/h)	0	30	1276	1	0	0	1431	37		0		4		41		36	
Percent Heavy Vehicles (%)	0	0			0	0				0		0		0		0	
Proportion Time Blocked																	
Percent Grade (%)										()				0		
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)		4.1				4.1				7.5		6.9		7.5		6.9	
Critical Headway (sec)		4.10				4.10				7.50		6.90		7.50		6.90	
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3		3.5		3.3	
Follow-Up Headway (sec)		2.20				2.20				3.50		3.30		3.50		3.30	
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)		32				0					4				82		
Capacity, c (veh/h)		429				513					399				36		
v/c Ratio		0.07				0.00					0.01				2.28		
95% Queue Length, Q ₉₅ (veh)		0.2				0.0					0.0				9.1		
95% Queue Length, Q ₉₅ (ft)		5.0									0.0				227.5		
Control Delay (s/veh)		14.1				12.0					14.1				825.8		
Level of Service (LOS)		В				В					В				F		
Approach Delay (s/veh)		0	.3			0	.0			14	1.1		825.8				
Approach LOS		,	Ą			,	4				3			F			

Generated: 12/18/2024 4:32:16 PM

ORD 2025-10692 Page 152 of 167

	HCS Two-Way Stop	-Control Report	Appendix H
General Information		Site Information	
Analyst	David W	Intersection	Ogden Avenue at Linscott Ave/East Site Dr
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	12/18/2024	East/West Street	Ogden Avenue
Analysis Year	2031	North/South Street	Linscott Ave
Time Analyzed	12:00-1:00 PM	Peak Hour Factor	0.94
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	SAT Total w/ Left Turn Lane		

Lanes

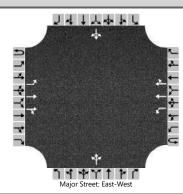

Vehicle Volumes and Ad	justme	nts																
Approach	T	Eastb	oound			Westl	oound			North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		1	0	1		
Configuration		L	Т	TR		L	Т	TR			LR			L		R		
Volume (veh/h)	0	30	1276	1	0	0	1431	37		0		4		41		36		
Percent Heavy Vehicles (%)	0	0			0	0				0		0		0		0		
Proportion Time Blocked																		
Percent Grade (%)										()				0			
Right Turn Channelized														N	10			
Median Type Storage				Undi	vided													
Critical and Follow-up H	eadwa	ys																
Base Critical Headway (sec)		4.1				4.1				7.5		6.9		7.5		6.9		
Critical Headway (sec)		4.10				4.10				7.50		6.90		7.50		6.90		
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3		3.5		3.3		
Follow-Up Headway (sec)		2.20				2.20				3.50		3.30		3.50		3.30		
Delay, Queue Length, an	d Leve	l of S	ervice															
Flow Rate, v (veh/h)	Т	32				0					4			44		38		
Capacity, c (veh/h)		429				513					399			20		342		
v/c Ratio		0.07				0.00					0.01			2.17		0.11		
95% Queue Length, Q ₉₅ (veh)		0.2				0.0					0.0			5.8		0.4		
95% Queue Length, Q ₉₅ (ft)		5.0									0.0			145.0		10.0		
Control Delay (s/veh)		14.1				12.0					14.1			942.1		16.8		
Level of Service (LOS)		В				В					В			F		С		
Approach Delay (s/veh)		0).3			0	.0			14	1.1			509.5				
Approach LOS			A				4				В			F				

Generated: 12/20/2024 12:15:26 PM

ORD 2025-10692 Page 153 of 167

	HCS Two-Way Stop	-Control Report	Appendix H
General Information		Site Information	
Analyst	David W	Intersection	Ogden Avenue at West Site Drive
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	12/18/2024	East/West Street	Ogden Avenue
Analysis Year	2024	North/South Street	West Site Drive
Time Analyzed	7:30-8:30 AM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Existing AM		

Lanes

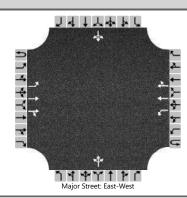

					iviaj	OI Street. La	31-AAC31									
Vehicle Volumes and Ad	justme	nts														
Approach		Eastk	oound			Westl	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0
Configuration		L	Т	TR		L	Т	TR			LTR				LTR	
Volume (veh/h)	0	4	1455	0	0	0	1157	0		0	0	0		1	0	4
Percent Heavy Vehicles (%)	0	0			0	0				0	0	0		0	0	0
Proportion Time Blocked																
Percent Grade (%)										(0				0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5	6.5	6.9
Critical Headway (sec)		4.10				4.10				7.50	6.50	6.90		7.50	6.50	6.90
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30
Delay, Queue Length, an	d Leve	l of S	ervice	•												
Flow Rate, v (veh/h)		4				0					0				5	
Capacity, c (veh/h)		580				440					0				137	
v/c Ratio		0.01				0.00									0.04	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0									0.1	
95% Queue Length, Q ₉₅ (ft)		0.0													2.5	
Control Delay (s/veh)		11.3				13.2									32.3	
Level of Service (LOS)		В				В									D	
Approach Delay (s/veh)		C	0.0			0	.0									
Approach LOS			A				A									

Generated: 12/18/2024 3:00:52 PM

ORD 2025-10692 Page 154 of 167

	HCS Two-Way Stop	-Control Report	Appendix H
General Information		Site Information	
Analyst	David W	Intersection	Ogden Avenue at West Site Drive
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	12/18/2024	East/West Street	Ogden Avenue
Analysis Year	2031	North/South Street	West Site Drive
Time Analyzed	7:30-8:30 AM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	AM No-Build		

Lanes

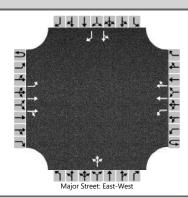

Approach		Eastb	ound			Westl	oound			North	bound			South	bound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0		
Configuration		L	Т	TR		L	Т	TR			LTR				LTR			
Volume (veh/h)	0	4	1513	0	0	0	1211	0		0	0	0		1	0	4		
Percent Heavy Vehicles (%)	0	0			0	0				0	0	0		0	0	0		
Proportion Time Blocked																		
Percent Grade (%)										()			(0			
Right Turn Channelized																		
Median Type Storage				Undi	vided													
Critical and Follow-up H	eadwa	ys																
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5	6.5	6.9		
Critical Headway (sec)		4.10				4.10				7.50	6.50	6.90		7.50	6.50	6.90		
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3		
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30		
Delay, Queue Length, an	d Leve	l of S	ervice															
Flow Rate, v (veh/h)		4				0					0				5			
Capacity, c (veh/h)		552				417					0				121			
v/c Ratio		0.01				0.00									0.04			
95% Queue Length, Q ₉₅ (veh)		0.0				0.0									0.1			
95% Queue Length, Q ₉₅ (ft)		0.0													2.5			
Control Delay (s/veh)		11.6				13.6									36.2			
Level of Service (LOS)		В				В									E			
Approach Delay (s/veh)		0	.0			0	.0						36.2					
Approach LOS			Ą			,	4							E				

Generated: 12/18/2024 3:03:25 PM

ORD 2025-10692 Page 155 of 167

	HCS Two-Way Stop	-Control Report	Appendix H
General Information		Site Information	
Analyst	David W	Intersection	Ogden Avenue at West Site Drive
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	12/18/2024	East/West Street	Ogden Avenue
Analysis Year	2031	North/South Street	West Site Drive
Time Analyzed	7:30-8:30 AM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	AM Total		

Lanes

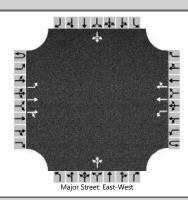

Approach	Т	Easth	ound			Westl	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9	_	10	11	12	
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0	
Configuration		L	Т	TR		L	Т	TR			LTR				LTR		
Volume (veh/h)	0	35	1513	0	0	0	1211	36		0	0	0		29	0	33	
Percent Heavy Vehicles (%)	0	0			0	0				0	0	0		0	0	0	
Proportion Time Blocked																	
Percent Grade (%)										()			(0		
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)	T	4.1				4.1				7.5	6.5	6.9		7.5	6.5	6.9	
Critical Headway (sec)		4.10				4.10				7.50	6.50	6.90		7.50	6.50	6.90	
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3	
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30	
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)	Τ	37				0					0				65		
Capacity, c (veh/h)		534				417					0				51		
v/c Ratio		0.07				0.00									1.29		
95% Queue Length, Q ₉₅ (veh)		0.2				0.0									6.0		
95% Queue Length, Q ₉₅ (ft)		5.0													150.0		
Control Delay (s/veh)		12.2				13.6									355.4		
Level of Service (LOS)		В				В									F		
Approach Delay (s/veh)		0	.3			0	.0						355.4				
Approach LOS		,	Ą			,	4							F			

Generated: 12/18/2024 3:15:37 PM

ORD 2025-10692 Page 156 of 167

	HCS Two-Way Stop	-Control Report	Appendix H
General Information		Site Information	
Analyst	David W	Intersection	Ogden Avenue at West Site Drive
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	12/18/2024	East/West Street	Ogden Avenue
Analysis Year	2031	North/South Street	West Site Drive
Time Analyzed	7:30-8:30 AM	Peak Hour Factor	0.95
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	AM Total w/ Left Turn Lane		

Lanes

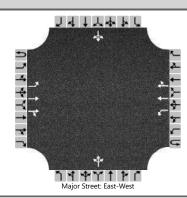

Approach	$\overline{}$	Eacth	ound			Westk	nound			North	hound			South	bound		
				Б			_								_	-	
Movement	U	L	T	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	1	
Configuration		L	T	TR		L	T	TR			LTR			LT		R	
Volume (veh/h)	0	35	1513	0	0	0	1211	36		0	0	0		29	0	33	
Percent Heavy Vehicles (%)	0	0			0	0				0	0	0		0	0	0	
Proportion Time Blocked																	
Percent Grade (%)										()			()		
Right Turn Channelized														N	lo		
Median Type Storage				Undi	vided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5	6.5	6.9	
Critical Headway (sec)		4.10				4.10				7.50	6.50	6.90		7.50	6.50	6.90	
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3	
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30	
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)		37				0					0			31		35	
Capacity, c (veh/h)		534				417					0			25		413	
v/c Ratio		0.07				0.00								1.21		0.08	
95% Queue Length, Q ₉₅ (veh)		0.2				0.0								3.7		0.3	
95% Queue Length, Q ₉₅ (ft)		5.0												92.5		7.5	
Control Delay (s/veh)		12.2				13.6								475.8		14.5	
Level of Service (LOS)		В				В								F		В	
Approach Delay (s/veh)		0	.3			0	.0										
Approach LOS			4				Α							F			

Generated: 12/20/2024 12:17:06 PM

ORD 2025-10692 Page 157 of 167

	HCS Two-Way Stop	-Control Report	Appendix H
General Information		Site Information	
Analyst	David W	Intersection	Ogden Avenue at West Site Drive
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	12/18/2024	East/West Street	Ogden Avenue
Analysis Year	2024	North/South Street	West Site Drive
Time Analyzed	4:30-5:30 PM	Peak Hour Factor	0.97
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Existing PM		

Lanes

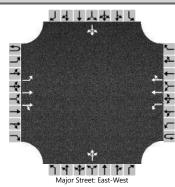

Vehicle Volumes and Ad	justme	nts														
Approach	Т	Eastk	oound			Westl	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0
Configuration		L	Т	TR		L	Т	TR			LTR				LTR	
Volume (veh/h)	0	0	1307	1	0	3	1690	1		1	0	2		0	0	0
Percent Heavy Vehicles (%)	0	0			0	0				0	0	0		0	0	0
Proportion Time Blocked																
Percent Grade (%))				0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5	6.5	6.9
Critical Headway (sec)		4.10				4.10				7.50	6.50	6.90		7.50	6.50	6.90
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т	0				3					3				0	
Capacity, c (veh/h)		365				517					65				0	
v/c Ratio		0.00				0.01					0.05					
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.1					
95% Queue Length, Q ₉₅ (ft)						0.0					2.5					
Control Delay (s/veh)		14.9				12.0					63.3					
Level of Service (LOS)		В				В					F					
Approach Delay (s/veh)		C	0.0			0	.0			63	3.3					
Approach LOS			A				A				F					

Generated: 12/18/2024 3:22:49 PM

ORD 2025-10692 Page 158 of 167

	HCS Two-Way Stop	-Control Report	Appendix H
General Information		Site Information	
Analyst	David W	Intersection	Ogden Avenue at West Site Drive
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	12/18/2024	East/West Street	Ogden Avenue
Analysis Year	2031	North/South Street	West Site Drive
Time Analyzed	4:30-5:30 PM	Peak Hour Factor	0.97
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	PM No-Build		

Lanes

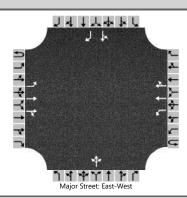

Approach		Easth	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	T	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0
Configuration		L	Т	TR		L	Т	TR			LTR				LTR	
Volume (veh/h)	0	0	1360	1	0	3	1751	1		1	0	2		0	0	0
Percent Heavy Vehicles (%)	0	0			0	0				0	0	0		0	0	0
Proportion Time Blocked																
Percent Grade (%)										()			(0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5	6.5	6.9
Critical Headway (sec)		4.10				4.10				7.50	6.50	6.90		7.50	6.50	6.90
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		0				3					3				0	
Capacity, c (veh/h)		345				493					56				0	
v/c Ratio		0.00				0.01					0.05					
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.2					
95% Queue Length, Q ₉₅ (ft)						0.0					5.0					
Control Delay (s/veh)		15.4				12.3					72.6					
Level of Service (LOS)		С				В					F					
Approach Delay (s/veh)		0	0.0			0	.0			72	2.6					
Approach LOS			A				4				=					

Generated: 12/18/2024 3:44:56 PM

ORD 2025-10692 Page 159 of 167

	HCS Two-Way Stop	-Control Report	Appendix H
General Information		Site Information	
Analyst	David W	Intersection	Ogden Avenue at West Site Drive
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	12/18/2024	East/West Street	Ogden Avenue
Analysis Year	2031	North/South Street	West Site Drive
Time Analyzed	4:30-5:30 PM	Peak Hour Factor	0.97
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	PM Total		

Lanes

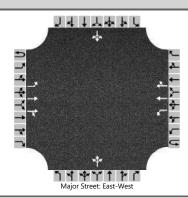

					iviaj	Of Street. La	ist-vvest									
Vehicle Volumes and Ad	justme	nts														
Approach		Eastl	oound			Westl	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0
Configuration		L	Т	TR		L	Т	TR			LTR				LTR	
Volume (veh/h)	0	27	1363	1	0	3	1751	33		1	0	2		29	0	28
Percent Heavy Vehicles (%)	0	0			0	0				0	0	0		0	0	0
Proportion Time Blocked																
Percent Grade (%)											0				0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5	6.5	6.9
Critical Headway (sec)		4.10				4.10				7.50	6.50	6.90		7.50	6.50	6.90
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30
Delay, Queue Length, an	d Leve	l of S	ervice	•												
Flow Rate, v (veh/h)		28				3					3				59	
Capacity, c (veh/h)		335				492					42				22	
v/c Ratio		0.08				0.01					0.07				2.67	
95% Queue Length, Q ₉₅ (veh)		0.3				0.0					0.2				7.5	
95% Queue Length, Q ₉₅ (ft)		7.5				0.0					5.0				187.5	
Control Delay (s/veh)		16.7				12.4					98.3				1126.9	
Level of Service (LOS)		С				В					F				F	
Approach Delay (s/veh)		().3			0	0.0			98	3.3			11	26.9	
Approach LOS			A				A				F				F	

Generated: 12/18/2024 3:29:56 PM

ORD 2025-10692 Page 160 of 167

	HCS Two-Way Stop	-Control Report	Appendix H
General Information		Site Information	
Analyst	David W	Intersection	Ogden Avenue at West Site Drive
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	12/18/2024	East/West Street	Ogden Avenue
Analysis Year	2031	North/South Street	West Site Drive
Time Analyzed	4:30-5:30 PM	Peak Hour Factor	0.97
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	PM Total w/ Left Turn Lane		

Lanes

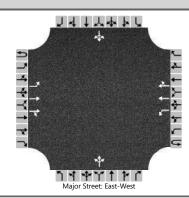

Approach	Т	Facth	ound			Westl	nound			North	hound			South	bound	
	-	Lasti	Т	_ n			Т	l n	U			l n	U		Т	П
Movement	U	_		R	U	L		R	U	L	T	R	-	L		R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	1
Configuration		L	T	TR		L	T	TR			LTR			LT		R
Volume (veh/h)	0	27	1363	1	0	3	1751	33		1	0	2		29	0	28
Percent Heavy Vehicles (%)	0	0			0	0				0	0	0		0	0	0
Proportion Time Blocked																
Percent Grade (%)										()			()	
Right Turn Channelized														N	lo	
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5	6.5	6.9
Critical Headway (sec)		4.10				4.10				7.50	6.50	6.90		7.50	6.50	6.90
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)		28				3					3			30		29
Capacity, c (veh/h)		335				492					42			12		277
v/c Ratio		0.08				0.01					0.07			2.57		0.10
95% Queue Length, Q ₉₅ (veh)		0.3				0.0					0.2			4.7		0.3
95% Queue Length, Q ₉₅ (ft)		7.5				0.0					5.0			117.5		7.5
Control Delay (s/veh)		16.7				12.4					98.3			1361.4		19.5
Level of Service (LOS)		С				В					F			F		С
Approach Delay (s/veh)		0	.3			0	.0			98	3.3					
Approach LOS			Α				4				=					

Generated: 12/20/2024 12:19:18 PM

ORD 2025-10692 Page 161 of 167

	HCS Two-Way Stop	-Control Report	Appendix H
General Information		Site Information	
Analyst	David W	Intersection	Ogden Avenue at West Site Drive
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	12/18/2024	East/West Street	Ogden Avenue
Analysis Year	2024	North/South Street	West Site Drive
Time Analyzed	12:00-1:00 PM	Peak Hour Factor	0.91
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	SAT Existing		

Lanes

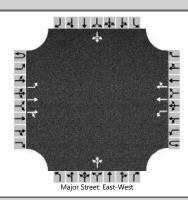

Approach	T	Easth	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	T	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0
Configuration	+	L	T	TR		L	T	TR		_	LTR			_	LTR	
Volume (veh/h)	0	1	1211	0	0	0	1375	3		0	0	2		4	0	0
Percent Heavy Vehicles (%)	0	0			0	0				0	0	0		0	0	0
Proportion Time Blocked																
Percent Grade (%)										()				0	
Right Turn Channelized																
Median Type Storage	1			Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5	6.5	6.9
Critical Headway (sec)		4.10				4.10				7.50	6.50	6.90		7.50	6.50	6.90
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)	Τ	1				0					2				4	
Capacity, c (veh/h)		447				525					407				26	
v/c Ratio		0.00				0.00					0.01				0.17	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.0				0.5	
95% Queue Length, Q ₉₅ (ft)		0.0									0.0				12.5	
Control Delay (s/veh)		13.1				11.9					13.9				168.4	
Level of Service (LOS)		В				В					В				F	
Approach Delay (s/veh)		0	.0			0	.0			13	3.9	<u> </u>				
Approach LOS		,	Ą			,	4				3				F	

Generated: 12/18/2024 3:43:28 PM

ORD 2025-10692 Page 162 of 167

	HCS Two-Way Stop	-Control Report	Appendix H
General Information		Site Information	
Analyst	David W	Intersection	Ogden Avenue at West Site Drive
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	12/18/2024	East/West Street	Ogden Avenue
Analysis Year	2031	North/South Street	West Site Drive
Time Analyzed	12:00-1:00 PM	Peak Hour Factor	0.91
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	SAT No-Build		

Lanes

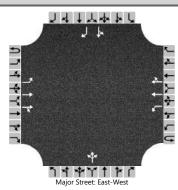

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0
Configuration		L	Т	TR		L	Т	TR			LTR				LTR	
Volume (veh/h)	0	1	1259	0	0	0	1422	3		0	0	2		4	0	0
Percent Heavy Vehicles (%)	0	0			0	0				0	0	0		0	0	0
Proportion Time Blocked																
Percent Grade (%))				0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5	6.5	6.9
Critical Headway (sec)		4.10				4.10				7.50	6.50	6.90		7.50	6.50	6.90
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	T	1				0					2				4	
Capacity, c (veh/h)		427				502					391				23	
v/c Ratio		0.00				0.00					0.01				0.19	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.0				0.6	
95% Queue Length, Q ₉₅ (ft)		0.0									0.0				15.0	
Control Delay (s/veh)		13.4				12.2					14.3				197.2	
Level of Service (LOS)		В				В					В				F	
Approach Delay (s/veh)		0	.0			0	.0			14	1.3			19	7.2	
Approach LOS	A A B F									F						

Generated: 12/18/2024 3:38:56 PM

ORD 2025-10692 Page 163 of 167

	Appendix H		
General Information		Site Information	
Analyst	David W	Intersection	Ogden Avenue at West Site Drive
Agency/Co.	GHA	Jurisdiction	IDOT
Date Performed	12/18/2024	East/West Street	Ogden Avenue
Analysis Year	2031	North/South Street	West Site Drive
Time Analyzed	12:00-1:00 PM	Peak Hour Factor	0.91
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	SAT Total		

Lanes


Vehicle Volumes and Ad	justme	nts																	
Approach	T	ound	Westbound					North	bound		Southbound								
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R			
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12			
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0			
Configuration		L	Т	TR		L	Т	TR			LTR				LTR				
Volume (veh/h)	0	30	1271	0	0	0	1431	36		0	0	2		34	0	27			
Percent Heavy Vehicles (%)	0	0			0	0				0	0	0		0	0	0			
Proportion Time Blocked																			
Percent Grade (%))		0						
Right Turn Channelized																			
Median Type Storage		Undivided																	
Critical and Follow-up H	eadwa	ys																	
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5	6.5	6.9			
Critical Headway (sec)		4.10				4.10				7.50	6.50	6.90		7.50	6.50	6.90			
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3			
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30			
Delay, Queue Length, an	d Leve	l of S	ervice																
Flow Rate, v (veh/h)	Т	33				0					2				67				
Capacity, c (veh/h)		410				496					387				30				
v/c Ratio		0.08				0.00					0.01				2.20				
95% Queue Length, Q ₉₅ (veh)		0.3				0.0					0.0				7.8				
95% Queue Length, Q ₉₅ (ft)		7.5									0.0				195.0				
Control Delay (s/veh)		14.5				12.3					14.3				830.6				
Level of Service (LOS)		В				В					В				F				
Approach Delay (s/veh)	Ì	0.3				0	.0			14	1.3		830.6						
Approach LOS		А				A					В		F						

Generated: 12/18/2024 3:37:02 PM

ORD 2025-10692 Page 164 of 167

	Appendix H								
General Information		Site Information							
Analyst	David W	Intersection	Ogden Avenue at West Site Drive						
Agency/Co.	GHA	Jurisdiction	IDOT						
Date Performed	12/18/2024	East/West Street	Ogden Avenue						
Analysis Year	2031	North/South Street	West Site Drive						
Time Analyzed	12:00-1:00 PM	Peak Hour Factor	0.91						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	SAT Total w/ Left Turn Lane								

Lanes

Vehicle Volumes and Adj	ustme																			
Approach	Eastbound				Westbound					North	bound		Southbound							
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R				
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12				
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	1				
Configuration		L	Т	TR		L	Т	TR			LTR			LT		R				
Volume (veh/h)	0	30	1271	0	0	0	1431	36		0	0	2		34	0	27				
Percent Heavy Vehicles (%)	0	0			0	0				0	0	0		0	0	0				
Proportion Time Blocked																				
Percent Grade (%)										()		0							
Right Turn Channelized													No							
Median Type Storage		Undivided																		
Critical and Follow-up H	eadwa	ys																		
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5	6.5	6.9				
Critical Headway (sec)		4.10				4.10				7.50	6.50	6.90		7.50	6.50	6.90				
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3				
Follow-Up Headway (sec)		2.20				2.20				3.50	4.00	3.30		3.50	4.00	3.30				
Delay, Queue Length, an	d Leve	l of Se	ervice																	
Flow Rate, v (veh/h)		33				0					2			37		30				
Capacity, c (veh/h)		410				496					387			18		329				
v/c Ratio		0.08				0.00					0.01			2.11		0.09				
95% Queue Length, Q ₉₅ (veh)		0.3				0.0					0.0			5.2		0.3				
95% Queue Length, Q ₉₅ (ft)		7.5									0.0			130.0		7.5				
Control Delay (s/veh)		14.5				12.3					14.3			965.3		17.0				
Level of Service (LOS)		В				В					В			F		С				
Approach Delay (s/veh)	0.3				0.0			14.3				545.5								
Approach LOS	A				А					3		F								

Generated: 12/20/2024 12:20:21 PM

ORD 2025-10692 Page 165 of 167

VILLAGE OF DOWNERS GROVE PLANNING AND ZONING COMMISSION MEETING

February 3, 2025, 7:00 P.M.

24-PZC-0008: A PETITION SEEKING APPROVAL FOR A SPECIAL USE APPROVAL FOR A DRIVE THROUGH. THE PROPERTY IS CURRENTLY ZONED B-3, GENERAL SERVICES AND HIGHWAY BUSINESS. THE PROPERTY IS LOCATED THE PROPERTY IS LOCATED APPROXIMATELY 390 FEET WEST OF THE INTERSECTION OF SARATOGA AVENUE AND OGDEN AVENUE COMMONLY KNOWN AS 1250 OGDEN AVENUE, DOWNERS GROVE, IL (PIN: 09-06-403-005). VICK MEHTA, PETITIONER, 1254 OGDEN AVENUE, LLC, OWNER.

Vick Mehta, petitioner, explained that he is the petitioner for the proposed drive through special use request and recently completed another similar project where the Mcallisters Deli is. He then introduced his project architect Chris Jackson to provide the presentation for the special use request.

Mr. Jackson proceeded with the presentation showing a 3D rendering of the before and after for the proposed project. He then proceeded to show a map and existing conditions for the subject property. He then showed the site plan and drive through location for the proposed development. Landscaping, elevations and a description of the building materials was provided. Lastly, Mr. Jackson provided and overview of how the standards were met for the proposed drive through.

Chairman Rickard asked for questions for the petitioner.

Commissioner Lincoln asked how employees would get from the rear parking spaces to the building where the office was highlighted.

Mr. Mehta clarified that is actually not an office, but a utility room.

An inquiry was made regarding the proposed screening to the residents of the rear. It was indicted by Mr. Jackson that a 6 foot privacy fence would be installed as part of the project.

Chairman Rickard asked for public input.

Joan McGuire, stated that they lived behind the proposed development and they were concerned about traffic and turning movements from the proposed development.

Chairman Rickard asked for the staff report.

Jason Zawila, Planning Manager, presented on the request for a special use at 1250 Ogden Avenue. He displayed a location map and the public hearing notice sign. He stated that staff sent out mailed notices to all property owners within 250 feet, and received one comment, which general in nature, in addition to the two comments that were received ahead of publication of the agenda. Mr. Zawila then proceeded to present the site plan, and highlighted the proposed landscaping plan, pedestrian connection, dumpster enclosure location and the proposed drive through, which will exceed the required eight stacking spaces with 13 spaces. Mr. Zawila then presented the proposed elevations

ORD 2025-10692 Page 166 of 167

and then provided how the proposed development met the recommendations provided in the Village's Comprehensive Plan. Lastly, Mr. Zawila presented the special use criteria, which staff did find the petitioner met and recommended that the Planning and Zoning Commission recommend approval of the proposed special use request.

Chairman Rickard asked for questions for staff.

Commissioner Lincoln noted that there was a slight discrepancy in the access plans for the proposed development. Mr. Zawila clarified that the ultimately the petitioner will need to submit a right-of-way permit with IDOT and that would be finalized with the permit submission, but also deferred to the petitioner to explain.

Chairman Rickard asked the petitioner to return to the podium to address any comments that were made and to provide a closing statement.

Mr. Jackson returned to the podium and stated that the traffic study and engineering plans are correct and what will be installed, but as Mr. Zawila noted that would be finalized during the permit submission.

Chairman Rickard asked for discussion from the commissioners.

General discussion occurred and the Commission did feel that standards were met and that this would be a nice addition to the improvements that are occurring along Ogden Avenue.

Chairman Rickard asked if anyone wanted to make a motion.

WITH RESPECT TO THE PETITIONER'S SUBMITTAL, THE STAFF REPORT, AND THE TESTIMONY PRESENTED, I FIND THAT THE PETITIONER HAS MET THE STANDARDS OF APPROVAL FOR A SPECIAL USE AS REQUIRED BY THE VILLAGE OF DOWNERS GROVE ZONING ORDINANCE AND IS IN THE PUBLIC INTEREST AND THEREFORE, K. PATEL MOVED THAT THE PLANNING AND ZONING COMMISSION RECOMMEND TO THE VILLAGE COUNCIL APPROVAL OF 24-PZC-0008, SUBJECT TO THE FOLLOWING CONDITIONS (1) THE PROPOSED SPECIAL USE FOR A DRIVE-THROUGH USE SHALL SUBSTANTIALLY CONFORM TO THE ATTACHED PROPOSED NEW MULTI-TENANT BUILDING PLANS FOR 1250-1254 OGDEN AVENUE DRAWINGS PREPARED BY BONO CONSULTING CIVIL ENGINEERING DATED DECEMBER 26, 2024, LAST REVISED JANUARY 21, 2025, ARCHITECTURAL DRAWINGS PREPARED BY CJ ARCHITECTS DATED DECEMBER 27, 2024, LAST REVISED JANUARY 21, 2025, EXCEPT AS SUCH PLANS MAY BE MODIFIED TO CONFORM TO VILLAGE CODES, ORDINANCES, AND POLICIES. (2) PROVISION OF CROSS ACCESS FOR THE IMMEDIATELY ADJACENT PROPERTIES TO THE WEST AND EAST OF THE SUBJECT PROPERTY. (3) THAT THE BRICK BUILDING MATERIALS CONSTRUCTED AT THE BASE OF THE BUILDING WILL BE CARRIED THROUGH TO THE ROOFLINE IN COLUMNS, PENDING INITIAL TENANT SIGN PLACEMENT.

SECOND BY COMMISSIONER RUTLEDGE

ORD 2025-10692 Page 167 of 167

ROLL CALL:

AYE: BOYLE, FRANKOVIC, K. PATEL, RUTLEDGE, LINCOLN, EBERHARDT, TOTH

CHAIRMAN RICKARD

NAY: NONE

MOTION APPROVED. VOTE: 8-0

/s/ Village Staff

Recording Secretary